891 resultados para Femoral nerve block
Resumo:
Objective: Acquired pit-like changes of the optic nerve head (APON) are characteristic of glaucomatous damage and may be a sign of a localized susceptibility of the optic nerve. Thus, it is possible that biomechanical properties of the ocular tissues may play a pressure-independent role in the pathogenesis of glaucoma. Corneal hysteresis (CH) appears to provide information of the biomechanical properties of the ocular hull tissues. The purpose of this study was to compare CH of patients with primary open angle glaucoma (POAG) with and without APON. Methods: A prospective case control study was done. POAG patients with and without APON were measured using the Ocular Response Analyzer by masked investigators. Patients in both groups were matched for sex, age, corneal thickness, and type of glaucoma according to maximal IOP (NTG or POAG). Statistical analysis was done using ANOVA. Results: Corneal hysteresis of 16 glaucomatous eyes with APON and 32 controls (glaucoma without APON) was measured. The mean (±SD) CH in the APON group was 8.89 (±1.53) and 10.2 (±1.05) in the control group. The difference is statistically significant (p = 0.005). Conclusions: Corneal hysteresis in POAG patients with APON was significantly lower than in patients that did not have such structural changes of the optic disc. These findings may reflect pressure-independent mechanisms involved in the pathogenesis of such glaucomatous optic nerve changes. © Springer-Verlag 2007.
Resumo:
We present BDDT, a task-parallel runtime system that dynamically discovers and resolves dependencies among parallel tasks. BDDT allows the programmer to specify detailed task footprints on any memory address range, multidimensional array tile or dynamic region. BDDT uses a block-based dependence analysis with arbitrary granularity. The analysis is applicable to existing C programs without having to restructure object or array allocation, and provides flexibility in array layouts and tile dimensions.
We evaluate BDDT using a representative set of benchmarks, and we compare it to SMPSs (the equivalent runtime system in StarSs) and OpenMP. BDDT performs comparable to or better than SMPSs and is able to cope with task granularity as much as one order of magnitude finer than SMPSs. Compared to OpenMP, BDDT performs up to 3.9× better for benchmarks that benefit from dynamic dependence analysis. BDDT provides additional data annotations to bypass dependence analysis. Using these annotations, BDDT outperforms OpenMP also in benchmarks where dependence analysis does not discover additional parallelism, thanks to a more efficient implementation of the runtime system.
Resumo:
As ubiquitous computing becomes a reality, sensitive information is increasingly processed and transmitted by smart cards, mobile devices and various types of embedded systems. This has led to the requirement of a new class of lightweight cryptographic algorithm to ensure security in these resource constrained environments. The International Organization for Standardization (ISO) has recently standardised two low-cost block ciphers for this purpose, Clefia and Present. In this paper we provide the first comprehensive hardware architecture comparison between these ciphers, as well as a comparison with the current National Institute of Standards and Technology (NIST) standard, the Advanced Encryption Standard.
Resumo:
We report a series of 706 patients (759 hip implants) with an average follow up of 10.5 years (range, 10-11 years) following total hip replacement (THR) using a cemented custom-made femoral stem and a cemented HDP acetabular component. The fate of every implant is known. One hundred and seventy-four patients (23%) were deceased at the time of their 10-year review all died with a functioning THR in situ. Four hundred and sixty-two patients (61%) were subsequently reviewed. One hundred and twenty three patients (16%) were assessed by telephone review, as they were too ill or unwilling to attend. Kaplan-Meier survival analysis (all components) demonstrated a median survival at 10 years of 96.05% or 95% Confidence Intervals (CI) for median survival of (94.41% to 97.22%). Revision surgery occurred in 30 cases (3.9%). Seventeen had full revisions (2.2%) and 13 (1.7%) socket revisions only. Twenty-one out of 30 revisions were for infection or dislocation. There were 2 cases (0.3%) of revision for aseptic loosening of the stem. The 10-year results of the custom femoral titanium stem are encouraging and compare well with other cemented systems.
Resumo:
Restoration of joint centre during total hip arthroplasty is critical. While computer-aided navigation can improve accuracy during total hip arthroplasty, its expense makes it inaccessible to the majority of surgeons. This article evaluates the use, in the laboratory, of a calliper with a simple computer application to measure changes in femoral head centres during total hip arthroplasty. The computer application was designed using Microsoft Excel and used calliper measurements taken pre- and post-femoral head resection to predict the change in head centre in terms of offset and vertical height between the femoral head and newly inserted prosthesis. Its accuracy was assessed using a coordinate measuring machine to compare changes in preoperative and post-operative head centre when simulating stem insertion on 10 sawbone femurs. A femoral stem with a modular neck was used, which meant nine possible head centre configurations were available for each femur, giving 90 results. The results show that using this technique during a simulated total hip arthroplasty, it was possible to restore femoral head centre to within 6?mm for offset (mean 1.67?±?1.16?mm) and vertical height (mean 2.14?±?1.51?mm). It is intended that this low-cost technique be extended to inform the surgeon of a best-fit solution in terms of neck length and neck type for a specific prosthesis.
Resumo:
Abstract-Channel state information (CSI) at the transmitter can be used to adapt transmission rate or antenna gains in multi-antenna systems. We propose a rate-adaptive M-QAM scheme equipped with orthogonal space-time block coding with simple outdated, finite-rate feedback over independent flat fading channels. We obtain closed-form expressions for the average BER and throughput for our scheme, and analyze the effects of possibly delayed feedback on the performance gains. We derive optimal switching thresholds maximizing the average throughput under average and outage BER constraints with outdated feedback. Our numerical results illustrate the immunity of our optimal thresholds to delayed feedback.
Resumo:
The purpose of this study was to define pathological abnormalities in the peripheral nerve of a large animal model of long-duration type 1 diabetes and also to determine the effects of treatment with sulindac. Detailed morphometric studies were performed to define nerve fiber and endoneurial capillary pathology in 6 control dogs, 6 type 1 diabetic dogs treated with insulin, and 6 type 1 diabetic dogs treated with insulin and sulindac for 4 years. Myelinated fiber and regenerative cluster density showed a non-significant trend toward a reduction in diabetic compared to control animals, which was prevented by treatment with sulindac. Unmyelinated fiber density did not differ among groups. However, diabetic animals showed a non-significant trend toward an increase in axon diameter (p <0.07), with a shift of the size frequency distribution towards larger axons, which was not prevented by treatment with sulindac. Endoneurial capillary density and luminal area showed a non-significant trend toward an increase in diabetic animals, which was prevented with sulindac treatment. Endoneurial capillary basement membrane area was significantly increased (p <0.05) in diabetic animals, but was not prevented with sulindac treatment. We conclude that the type 1 diabetic dog demonstrates minor structural abnormalities in the nerve fibers and endoneurial capillaries of the sciatic nerve, and treatment with sulindac ameliorates some but not all of these abnormalities.
Resumo:
This study was undertaken to identify the alpha-adrenergic receptor type responsible for sympathetically evoked mydriasis in pentobarbital-anesthetized rabbits. Frequency-response curves of pupillary dilation were generated by stimulation of the preganglionic cervical sympathetic nerve (1-64 Hz). Evoked mydriatic responses were inhibited by systemic administration of nonselective alpha-adrenergic antagonists, phentolamine (0.3-10 mg/kg) and phenoxybenzamine (0.03-0.3 mg/kg), as well as the selective alpha(1)-adrenergic antagonist, prazosin (0.1-1 mg/kg). The alpha(2)-adrenergic antagonist, RS 79948 (0.3 mg/kg, i.v.) was without inhibitory effect, but potentiated the mydriatic response. In addition, the selective alpha(1A)-adrenoceptor antagonist, 5-methylurapidil (0.1-1 mg/kg, i.v.), antagonized the elicited mydriasis in a dose-dependent fashion. Unlike previous observations that prazosin does not block the adrenoceptor in rabbit iris dilator muscle, our results suggest that prazosin is effective in inhibiting neuronally elicited mydriasis in this species, and that alpha(1A)-adrenoceptors appear to mediate the response.