838 resultados para Feature Vector
Resumo:
Crohn's disease (CD) is a high morbidity chronic inflammatory disorder of unknown aetiology. Adherent-invasive Escherichia coli (AIEC) has been recently implicated in the origin and perpetuation of CD. Because bacterial biofilms in the gut mucosa are suspected to play a role in CD and biofilm formation is a feature of certain pathogenic E. coli strains, we compared the biofilmformation capacity of 27 AIEC and 38 non-AIEC strains isolated from the intestinal mucosa. Biofilmformation capacity was then contrasted with the AIEC phenotype, the serotype, the phylotype, andthe presence of virulence genes. Results: Specific biofilm formation (SBF) indices were higher amongst AIEC than non-AIEC strains(P = 0.012). In addition, 65.4% of moderate to strong biofilms producers were AIEC, whereas74.4% of weak biofilm producers were non-AIEC (P = 0.002). These data indicate that AIEC strainswere more efficient biofilm producers than non-AIEC strains. Moreover, adhesion (P = 0.009) andinvasion (P = 0.003) indices correlated positively with higher SBF indices. Additionally, motility(100%, P < 0.001), H1 type flagellin (53.8%, P < 0.001), serogroups O83 (19.2%, P = 0.008) and O22(26.9%, P = 0.001), the presence of virulence genes such as sfa/focDE (38.5%, P = 0.003) and ibeA(26.9%, P = 0.017), and B2 phylotype (80.8%, P < 0.001) were frequent characteristics amongstbiofilm producers.Conclusion: The principal contribution of the present work is the finding that biofilm formationcapacity is a novel, complementary pathogenic feature of the recently described AIEC pathovar. Characterization of AIEC specific genetic determinants, and the regulatory pathways, involved in biofilm formation will likely bring new insights into AIEC pathogenesis
Resumo:
For the tracking of extrema associated with weather systems to be applied to a broad range of fields it is necessary to remove a background field that represents the slowly varying, large spatial scales. The sensitivity of the tracking analysis to the form of background field removed is explored for the Northern Hemisphere winter storm tracks for three contrasting fields from an integration of the U. K. Met Office's (UKMO) Hadley Centre Climate Model (HadAM3). Several methods are explored for the removal of a background field from the simple subtraction of the climatology, to the more sophisticated removal of the planetary scales. Two temporal filters are also considered in the form of a 2-6-day Lanczos filter and a 20-day high-pass Fourier filter. The analysis indicates that the simple subtraction of the climatology tends to change the nature of the systems to the extent that there is a redistribution of the systems relative to the climatological background resulting in very similar statistical distributions for both positive and negative anomalies. The optimal planetary wave filter removes total wavenumbers less than or equal to a number in the range 5-7, resulting in distributions more easily related to particular types of weather system. For the temporal filters the 2-6-day bandpass filter is found to have a detrimental impact on the individual weather systems, resulting in the storm tracks having a weak waveguide type of behavior. The 20-day high-pass temporal filter is less aggressive than the 2-6-day filter and produces results falling between those of the climatological and 2-6-day filters.
Resumo:
In this paper extensions to an existing tracking algorithm are described. These extensions implement adaptive tracking constraints in the form of regional upper-bound displacements and an adaptive track smoothness constraint. Together, these constraints make the tracking algorithm more flexible than the original algorithm (which used fixed tracking parameters) and provide greater confidence in the tracking results. The result of applying the new algorithm to high-resolution ECMWF reanalysis data is shown as an example of its effectiveness.
Resumo:
The identification, tracking, and statistical analysis of tropical convective complexes using satellite imagery is explored in the context of identifying feature points suitable for tracking. The feature points are determined based on the shape of complexes using the distance transform technique. This approach has been applied to the determination feature points for tropical convective complexes identified in a time series of global cloud imagery. The feature points are used to track the complexes, and from the tracks statistical diagnostic fields are computed. This approach allows the nature and distribution of organized deep convection in the Tropics to be explored.
Resumo:
Techniques used in a previous study of the objective identification and tracking of meteorological features in model data are extended to the unit sphere. An alternative feature detection scheme is described based on cubic interpolation for the sphere and local maximization. The extension of the tracking technique, used in the previous study, to the unit sphere is described. An example of the application of these techniques to a global relative vorticity field from a model integration are presented and discussed.
Resumo:
Data from four recent reanalysis projects [ECMWF, NCEP-NCAR, NCEP - Department of Energy ( DOE), NASA] have been diagnosed at the scale of synoptic weather systems using an objective feature tracking method. The tracking statistics indicate that, overall, the reanalyses correspond very well in the Northern Hemisphere (NH) lower troposphere, although differences for the spatial distribution of mean intensities show that the ECMWF reanalysis is systematically stronger in the main storm track regions but weaker around major orographic features. A direct comparison of the track ensembles indicates a number of systems with a broad range of intensities that compare well among the reanalyses. In addition, a number of small-scale weak systems are found that have no correspondence among the reanalyses or that only correspond upon relaxing the matching criteria, indicating possible differences in location and/or temporal coherence. These are distributed throughout the storm tracks, particularly in the regions known for small-scale activity, such as secondary development regions and the Mediterranean. For the Southern Hemisphere (SH), agreement is found to be generally less consistent in the lower troposphere with significant differences in both track density and mean intensity. The systems that correspond between the various reanalyses are considerably reduced and those that do not match span a broad range of storm intensities. Relaxing the matching criteria indicates that there is a larger degree of uncertainty in both the location of systems and their intensities compared with the NH. At upper-tropospheric levels, significant differences in the level of activity occur between the ECMWF reanalysis and the other reanalyses in both the NH and SH winters. This occurs due to a lack of coherence in the apparent propagation of the systems in ERA15 and appears most acute above 500 hPa. This is probably due to the use of optimal interpolation data assimilation in ERA15. Also shown are results based on using the same techniques to diagnose the tropical easterly wave activity. Results indicate that the wave activity is sensitive not only to the resolution and assimilation methods used but also to the model formulation.
Resumo:
Moist singular vectors (MSV) have been applied successfully to predicting mid-latitude storms growing in association with latent heat of condensation. Tropical cyclone sensitivity has also been assessed. Extending this approach to more general tropical weather systems here, MSVs are evaluated for understanding and predicting African easterly waves, given the importance of moist processes in their development. First results, without initial moisture perturbations, suggest MSVs may be used advantageously. Perturbations bear similar structural and energy profiles to previous idealised non-linear studies and observations. Strong sensitivities prevail in the metrics and trajectories chosen, and benefits of initial moisture perturbations should be appraised. Copyright © 2009 Royal Meteorological Society
Resumo:
The extent to which the four-dimensional variational data assimilation (4DVAR) is able to use information about the time evolution of the atmosphere to infer the vertical spatial structure of baroclinic weather systems is investigated. The singular value decomposition (SVD) of the 4DVAR observability matrix is introduced as a novel technique to examine the spatial structure of analysis increments. Specific results are illustrated using 4DVAR analyses and SVD within an idealized 2D Eady model setting. Three different aspects are investigated. The first aspect considers correcting errors that result in normal-mode growth or decay. The results show that 4DVAR performs well at correcting growing errors but not decaying errors. Although it is possible for 4DVAR to correct decaying errors, the assimilation of observations can be detrimental to a forecast because 4DVAR is likely to add growing errors instead of correcting decaying errors. The second aspect shows that the singular values of the observability matrix are a useful tool to identify the optimal spatial and temporal locations for the observations. The results show that the ability to extract the time-evolution information can be maximized by placing the observations far apart in time. The third aspect considers correcting errors that result in nonmodal rapid growth. 4DVAR is able to use the model dynamics to infer some of the vertical structure. However, the specification of the case-dependent background error variances plays a crucial role.
Resumo:
Four-dimensional variational data assimilation (4D-Var) combines the information from a time sequence of observations with the model dynamics and a background state to produce an analysis. In this paper, a new mathematical insight into the behaviour of 4D-Var is gained from an extension of concepts that are used to assess the qualitative information content of observations in satellite retrievals. It is shown that the 4D-Var analysis increments can be written as a linear combination of the singular vectors of a matrix which is a function of both the observational and the forecast model systems. This formulation is used to consider the filtering and interpolating aspects of 4D-Var using idealized case-studies based on a simple model of baroclinic instability. The results of the 4D-Var case-studies exhibit the reconstruction of the state in unobserved regions as a consequence of the interpolation of observations through time. The results also exhibit the filtering of components with small spatial scales that correspond to noise, and the filtering of structures in unobserved regions. The singular vector perspective gives a very clear view of this filtering and interpolating by the 4D-Var algorithm and shows that the appropriate specification of the a priori statistics is vital to extract the largest possible amount of useful information from the observations. Copyright © 2005 Royal Meteorological Society
Resumo:
The ECMWF ensemble weather forecasts are generated by perturbing the initial conditions of the forecast using a subset of the singular vectors of the linearised propagator. Previous results show that when creating probabilistic forecasts from this ensemble better forecasts are obtained if the mean of the spread and the variability of the spread are calibrated separately. We show results from a simple linear model that suggest that this may be a generic property for all singular vector based ensemble forecasting systems based on only a subset of the full set of singular vectors.
Resumo:
Nonlinear adjustment toward long-run price equilibrium relationships in the sugar-ethanol-oil nexus in Brazil is examined. We develop generalized bivariate error correction models that allow for cointegration between sugar, ethanol, and oil prices, where dynamic adjustments are potentially nonlinear functions of the disequilibrium errors. A range of models are estimated using Bayesian Monte Carlo Markov Chain algorithms and compared using Bayesian model selection methods. The results suggest that the long-run drivers of Brazilian sugar prices are oil prices and that there are nonlinearities in the adjustment processes of sugar and ethanol prices to oil price but linear adjustment between ethanol and sugar prices.