969 resultados para Evoked Potentials, Visual


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, morphological changes in the optic nerve were determined by light microscopy in Wistar rats on an iron-deficient diet for 32 days or for 21 days followed by 10 days on an iron-recovery diet. The morphometric findings showed significantly fewer blood vessels and oligodendrocytes in the iron-deficient rats and iron-recovery rats than in the control group, as well as more astrocytes in the iron-recovery rats. Serum iron levels of the iron-deficient rats were significantly lower than those of the controls. On the other hand, iron-recovery rats had normal serum iron levels, but no change in the abnormal morphology of the myelinated axons and morphometric parameters. Our data indicate that iron is necessary for maintenance of the optic nerve cell structure, and morphological damage from iron-deficiency is not easily reverted by iron reposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lateral septal area (LSA) is a part of the limbic system and is involved in cardiovascular modulation. We previously reported that microinjection of noradrenaline (NA) into the LSA of unanesthetized rats caused pressor responses that are mediated by acute vasopressin release. Magnocellular neurons of the paraventricular (PVN) and supraoptic (SON) of the hypothalamus synthesize vasopressin. In the present work, we studied which of these nuclei is involved in the pressor pathway activated by unilateral NA injection into the LSA as well as the local neurotransmitter involved. Chemical ablation of the SON by unilateral injection of the nonspecific synapses blocker cobalt chloride (1 mM/100 nl) did not affect the pressor response evoked by NA (21 nmol/200 nl) microinjection into the LSA. However, the response to NA was blocked when cobalt chloride (1 mM/100 nl) was microinjected into the PVN, indicating that this hypothalamic nucleus is responsible for the mediation of the pressor response. There is evidence in the literature pointing to glutamate as a putative neurotransmitter activating magnocellular neurons. Pretreatment of the PVN with the selective non-N-methyl-D-asparate (NMDA) antagonist NBQX (2 nmol/100 nl) blocked the pressor response to NA microinjected into the LSA, whereas pretreatment with the selective NMDA antagonist LY235959 (2 nmol/100 nl) did not affect the response to NA. Our results implicate the PVN as the final structure in the pressor pathway activated by the microinjection of NA into the LSA. They also indicate that local glutamatergic synapses and non-NMDA glutamatergic receptors mediate the response in the PVN. (c) 2008 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microinjection Of L-glutamate (L-glu: 1, 3, 10 and 30nmol/100nL) into the lateral hypothalamus (LH) caused dose-related depressor and bradycardiac responses. The cardiovascular response to L-glu stimulation of the LH was blocked by pretreatment of the ventrolateral portion of the periaqueductal gray matter (vIPAG) with CoCl(2) (1 mM/100nL), indicating the existence of a synaptic relay of the hypotensive pathway in that area. Furthermore, the response to L-glu Was blocked by pretreatment of the vIPAG with 2 nmol/100 nL of the selective NMDA-receptor antagonist LY235959 and was not affected by pretreatment with 2 nmol/100 nL of the selective non-NMDA-receptor antagonist NBQX, suggesting a mediation of the hypotensive response by NMDA receptors in the APAG. In conclusion, our results indicate that the hypotensive pathway activated by microinjection Of L-glu into the LH involves a NMDA synaptic relay in the vIPAG. (c) 2007 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical or chemical stimulation of the dorsal periaqueductal gray matter (DPAG) evokes escape, a defensive behavior that has been related to panic attacks. Injection of 5-HT(1A) or 5-HT(2A) receptor agonists into this midbrain area inhibits this response. It has been proposed that the impairment of 5-HT mechanisms controlling escape at the level of the DPAG may underlie the susceptibility to panic attacks that characterizes the panic disorder. In this study we evaluated the effects of the pharmacological manipulation of the dorsal raphe nucleus (DRN), which are the main source of 5-HT input to the DPAG, on the escape response evoked in rats by the intra-DPAG injection of the nitric oxide donor SIN-1. The results showed that DRN administration of the 5-HT(1A) receptor agonist 8-OH-DPAT which inhibits the activity of 5-HT neurons favored the expression of escape induced by SIN-1. Intra-DRN injection of the excitatory amino acid kainic acid or the 5-HT(1A) receptor antagonist WAY-100635 did not change escape expression. However, both compounds fully blocked the escape reaction generated by intra-DPAG injection of the excitatory amino acid D,L-homocysteic acid (DLH). Overall, the results indicate that 5-HT neurons in the DRN exert a bidirectional control upon escape behavior generated by the DPAG. Taking into account the effect of WAY-100635 on DLH-induced escape, they also strengthen the view that DRN 5-HT(1A) autoreceptors are under tonic inhibitory influence by 5-HT. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic exercise evokes sustained cardiovascular changes, which are characterized by blood pressure and heart rate (HR) increases. Although it is well accepted that there is a central nervous system (CNS) mediation of cardiovascular adjustments during dynamic exercise, information on the role of specific CNS structures is limited. The bed nucleus of the stria terminalis (BST) is a forebrain structure known to be involved in central cardiovascular control. Based on this, we tested the hypothesis that BST modulates HR and mean arterial pressure (MAP) responses evoked when rats are submitted to dynamic exercise. Male Wistar rats were tested at three levels of exercise (0.4, 0.8 and 1 km h-1) on a rodent treadmill before and after BST treatment with CoCl(2), a non-selective neurotransmission blocker. Bilateral microinjection of CoCl(2) (1 nmol in 100 nl artificial cerebrospinal fluid) into the BST reduced the pressor response to exercise at 0.4 km h-1 as well as the tachycardic responses evoked by exercise at 0.4, 0.8 and 1 km h-1. The BST treatment with CoCl(2) did not affect baseline MAP or HR, suggesting a lack of tonic BST influence on cardiovascular parameters at rest. Moreover, BST treatment with CoCl(2) did not affect motor performance in the open-field test, which indicates that effects of BST inhibition on cardiovascular responses to dynamic exercise are not due to changes in motor activity. The present results suggest that local neurotransmission in the BST modulates exercise-related cardiovascular adjustments. Data indicate that BST facilitates pressor and tachycardic responses evoked by dynamic exercise in rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lateral part of intermediate layer of superior colliculus (SCI) is a critical substrate for successful predation by rats. Hunting-evoked expression of the activity marker Fos is concentrated in SCI while prey capture in rats with NMDA lesions in SCI is impaired. Particularly affected are rapid orienting and stereotyped sequences of actions associated with predation of fast moving prey. Such deficits are consistent with the view that the deep layers of SC are important for sensory guidance of movement. Although much of the relevant evidence involves visual control of movement, less is known about movement guidance by somatosensory input from vibrissae. Indeed, our impression is that prey contact with whiskers is a likely stimulus to trigger predation. Moreover, SCI receives whisker and orofacial somatosensory information directly from trigeminal complex, and indirectly from zona incerta, parvicelular reticular formation and somatosensory barrel cortex. To better understand sensory guidance of predation by vibrissal information we investigated prey capture by rats after whisker removal and the role of superior colliculus (SC) by comparing Fos expression after hunting with and without whiskers. Rats were allowed to hunt cockroaches, after which their whiskers were removed. Two days later they were allowed to hunt cockroaches again. Without whiskers the rats were less able to retain the cockroaches after capture and less able to pursue them in the event of the cockroach escaping. The predatory behaviour of rats with re-grown whiskers returned to normal. In parallel, Fos expression in SCI induced by predation was significantly reduced in whiskerless animals. We conclude that whiskers contribute to the efficiency of rat prey capture and that the loss of vibrissal input to SCI, as reflected by reduced Fos expression, could play a critical role in predatory deficits of whiskerless rats. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the effects of cannabis on perception are well documented, little is known about their neural basis or how these may contribute to the formation of psychotic symptoms. We used functional magnetic resonance imaging (fMRI) to assess the effects of Delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) during visual and auditory processing in healthy volunteers. In total, 14 healthy volunteers were scanned on three occasions. Identical 10mg THC, 600mg CBD, and placebo capsules were allocated in a balanced double-blinded pseudo-randomized crossover design. Plasma levels of each substance, physiological parameters, and measures of psychopathology were taken at baseline and at regular intervals following ingestion of substances. Volunteers listened passively to words read and viewed a radial visual checkerboard in alternating blocks during fMRI scanning. Administration of THC was associated with increases in anxiety, intoxication, and positive psychotic symptoms, whereas CBD had no significant symptomatic effects. THC decreased activation relative to placebo in bilateral temporal cortices during auditory processing, and increased and decreased activation in different visual areas during visual processing. CBD was associated with activation in right temporal cortex during auditory processing, and when contrasted, THC and CBD had opposite effects in the right posterior superior temporal gyrus, the right-sided homolog to Wernicke`s area. Moreover, the attenuation of activation in this area (maximum 61, -15, -2) by THC during auditory processing was correlated with its acute effect on psychotic symptoms. Single doses of THC and CBD differently modulate brain function in areas that process auditory and visual stimuli and relate to induced psychotic symptoms. Neuropsychopharmacology (2011) 36, 1340-1348; doi:10.1038/npp.2011.17; published online 16 March 2011