568 resultados para Euphorbiaceae.
Resumo:
The distribution of pollen in marine surface sediments offshore of the west coast of South Africa has been investigated to aid in the interpretation of marine pollen records of onshore vegetation changes. A transect of sediment surface pollen samples retrieved from the Namaqualand mudbelt from just south of the Orange River mouth (29°S) to St Helena Bay (33°S) indicates distinctive pollen spectra reflecting vegetation communities on the adjacent continent. Pollen concentration increases southwards, partly in relation to greater pollen productivity due to higher biomass and density of fynbos vegetation and of sedimentary processes and low pollen concentrations consequent to dilution with silt and clay from the Orange River. The distribution of specific pollen taxa suggests that the Orange River is a major contributor of pollen to the northern mudbelt declining southwards, while the pollen distribution in the central mudbelt is largely attributable to seasonal inputs of pollen from offshore berg winds and local ephemeral Namaqualand rivers. The typical fynbos elements dominate in the southern mudbelt indicating a pollen source mainly in the fynbos vegetation types. These conclusions support a companion analysis of fossil pollen records of two marine sediment cores from the northern and southern mudbelt respectively. This study demonstrates that pollen records from marine sediment cores in the Namaqualand mudbelt have the potential to be a tool to reconstruct palaeovegetation on the adjacent continent. However, to better reconstruct the palaeoclimate of South Africa and fully understand the relations between terrestrial and marine deposits, more marine surface sediments along the western coast of South Africa as well as more terrestrial surface sediments need to be studied.
Resumo:
To unravel the climatic and environmental dynamics in the borderlands of the Aegean Sea during the early and middle Holocene, and notably for the interval of sapropel S1 (S1) formation, we have analysed terrestrial palynomorphs from a marine core in the northern Aegean Sea. The qualitative results were complemented by quantitative pollen-based climate reconstructions. A land-sea correlation was established based on pollen data and sediment lightness measurements from the same core, and previously published benthic foraminifer data from a nearby core. The borderlands of the Aegean Sea underwent a transition from an open vegetation to oak-dominated woodlands between ~10.4 and ~9.5 ka cal BP. A coeval increase in winter precipitation suggests that moisture availability was the main factor controlling Holocene reforestation. The ~50% higher winter precipitation during S1 formation relative to "pre-sapropelic" conditions suggests a strong contribution from the borderlands of the Aegean Sea to the freshwater surplus during S1 formation. The humid and mild winter conditions during S1 formation were repeatedly punctuated by short-term climatic events that caused a partial deforestation and a reorganisation within the broad-leaved arboreal vegetation. In the marine realm, these events are documented by improved benthic oxygenation. The strongest event represents the regional expression of the 8.2 ka cold event and led to an interruption in S1 formation. Except for the interval of S1 formation, the pollen-derived winter temperatures correlate with the smoothed GISP2 K+ series. They support the previously published, marine-based concept that the intensity of the Siberian High strongly controlled the winter climate in the Aegean region. During S1 formation in the Aegean Sea, however, climate conditions in the borderlands were more strongly affected by the monsoonally influenced climate system of the lower latitudes.
Resumo:
Sporomorphs and dinoflagellate cysts from site GIK16867 in the northern Angola Basin record the vegetation history of the West African forest during the last 700 ka in relation to changes in salinity and productivity of the eastern Gulf of Guinea. During most cool and cold periods, the Afromontane forest, rather than the open grass-rich dry forest, expanded to lower altitudes partly replacing the lowland rain forest of the borderlands east of the Gulf of Guinea. Except in Stage 3, when oceanic productivity was high during a period of decreased atmospheric circulation, high oceanic productivity is correlated to strong winds. The response of marine productivity in the course of a climatic cycle, however, is earlier than that of wind vigour and makes wind-stress-induced oceanic upwelling in the area less likely. Monsoon variation is well illustrated by the pollen record of increased lowland rain forest that is paired to the dinoflagellate cyst record of decreased salinity forced by increased precipitation and run-off.
Resumo:
Influx of aeolian pollen trapped in marine sediments off Namibia provides a wind variation record for the last 135 kyr. The influx of major pollen components is derived from the southwest African desert/semi-desert zone and shows six periods during which enhanced southeast trade winds contributed to strong upwelling and reduced sea surface temperatures. The most prominent of these occurred during 17-23 cal. kyr, 42-56 kyr and before 130 kyr B.P. Correspondence between the pollen influx record and the Vostok deuterium isotope record suggests that pronounced glacial Antarctic cooling was accompanied by intensification of the southeast trades throughout the Late Quaternary. However, during 42-23 kyr B.P. the combination of strong Antarctic glaciation with a decrease of wind zonality induced by low latitude precessional insolation changes caused strong alongshore winds and Ekman pumping that resulted in strong upwelling and reduced sea surface temperatures without pollen influx enhancement.
Resumo:
To better understand Holocene vegetation and hydrological changes in South Africa, we analyzed pollen and microcharcoal records of two marine sites GeoB8331 and GeoB8323 from the Namaqualand mudbelt offshore the west coast of South Africa covering the last 9900 and 2200 years, respectively. Our data corroborate findings from literature that climate developments apparently contrast between the summer rainfall zone (SRZ) and winter rainfall zone (WRZ) over the last 9900 years, especially during the early and middle Holocene. During the early Holocene (9900-7800 cal.yr BP), a minimum of grass pollen suggests low summer rainfall in the SRZ, and the initial presence of Renosterveld vegetation indicates relatively wet conditions in the WRZ. Towards the middle Holocene (7800-2400 cal. yr BP), a rather moist savanna/grassland rich in grasses suggests higher summer rainfall in the SRZ resulting from increased austral summer insolation and a decline of fynbos vegetation accompanied by an increasing Succulent Karoo vegetation in the WRZ possibly suggests a southward shift of the Southern Hemisphere westerlies. During the last 2200 years, a trend towards higher aridity was observed for the SRZ, while the climate in the WRZ remained relatively stable. The Little Ice Age (ca. 700-200 cal. yr BP) was rather cool in both rainfall zones and drier in the SRZ while wetter in the WRZ.
Resumo:
Palynological data of the marine core M 16415-2 show latitudinal shifts of the northern fringe of the tropical rain forest in north-west Africa during the last 700 ka. Savanna and dry open forest expanded southwards and tropical rain forest expanded northwards during dry and humid periods, respectively. Until 220 ka B.P., the tropical rain forest probably kept its zonal character in West Africa during glacials and interglacials. It is only during the last two glacial periods that the rain forest possibly fragmented into refugia. Throughout the Brunhes chron, pollen and spore transport was mainly by trade winds.