959 resultados para Esterase bands as species markers
Resumo:
Background Bactrocera dorsalis s.s. is a pestiferous tephritid fruit fly distributed from Pakistan to the Pacific, with the Thai/Malay peninsula its southern limit. Sister pest taxa, B. papayae and B. philippinensis, occur in the southeast Asian archipelago and the Philippines, respectively. The relationship among these species is unclear due to their high molecular and morphological similarity. This study analysed population structure of these three species within a southeast Asian biogeographical context to assess potential dispersal patterns and the validity of their current taxonomic status. Results Geometric morphometric results generated from 15 landmarks for wings of 169 flies revealed significant differences in wing shape between almost all sites following canonical variate analysis. For the combined data set there was a greater isolation-by-distance (IBD) effect under a ‘non-Euclidean’ scenario which used geographical distances within a biogeographical ‘Sundaland context’ (r2 = 0.772, P < 0.0001) as compared to a ‘Euclidean’ scenario for which direct geographic distances between sample sites was used (r2 = 0.217, P < 0.01). COI sequence data were obtained for 156 individuals and yielded 83 unique haplotypes with no correlation to current taxonomic designations via a minimum spanning network. BEAST analysis provided a root age and location of 540kya in northern Thailand, with migration of B. dorsalis s.l. into Malaysia 470kya and Sumatra 270kya. Two migration events into the Philippines are inferred. Sequence data revealed a weak but significant IBD effect under the ‘non-Euclidean’ scenario (r2 = 0.110, P < 0.05), with no historical migration evident between Taiwan and the Philippines. Results are consistent with those expected at the intra-specific level. Conclusions Bactrocera dorsalis s.s., B. papayae and B. philippinensis likely represent one species structured around the South China Sea, having migrated from northern Thailand into the southeast Asian archipelago and across into the Philippines. No migration is apparent between the Philippines and Taiwan. This information has implications for quarantine, trade and pest management.
Resumo:
Many ecosystems worldwide are dominated by introduced plant species, leading to loss of biodiversity and ecosystem function. A common but rarely tested assumption is that these plants are more abundant in introduced vs. native communities, because ecological or evolutionary-based shifts in populations underlie invasion success. Here, data for 26 herbaceous species at 39 sites, within eight countries, revealed that species abundances were similar at native (home) and introduced (away) sites – grass species were generally abundant home and away, while forbs were low in abundance, but more abundant at home. Sites with six or more of these species had similar community abundance hierarchies, suggesting that suites of introduced species are assembling similarly on different continents. Overall, we found that substantial changes to populations are not necessarily a pre-condition for invasion success and that increases in species abundance are unusual. Instead, abundance at home predicts abundance away, a potentially useful additional criterion for biosecurity programmes.
Resumo:
The introduction of Eragrostis curvula (African Lovegrass, herafter Lovegrass) for pasture improvement across Australia has not been successful. Instead Lovegrass, a C4 perennial grass originating from Southern African, has proven unpalatable to stock and to have low nutritional value if stocks do eat it. It has spread prolifically along roadsides, stream banks, conservation areas and pastures. Because control efforts have not been effective, our aim was to determine the putative mechanisms responsible for the dominance of Lovegrass, specifically disturbance (selective grazing) and competition.
Resumo:
Characterization of mass transfer properties was achieved in the longitudinal, radial, and tangential directions for four Australian hardwood species: spotted gum, blackbutt, jarrah, and messmate. Measurement of mass transfer properties for these species was necessary to complement current vacuum drying modeling research. Water-vapour diffusivity was determined in steady state using a specific vapometer. Permeability was determined using a specialized device developed to measure over a wide range of permeability values. Permeability values of some species and material directions were extremely low and undetectable by the mass flow meter device. Hence, a custom system based on volume evolution was conceived to determine very low, previously unpublished, wood permeability values. Mass diffusivity and permeability were lowest for spotted gum and highest for messmate. Except for messmate in the radial direction, the four species measured were less permeable in all directions than the lowest published figures, demonstrating the high impermeability of Australian hardwoods and partly accounting for their relatively slow drying rates. Permeability, water-vapour diffusivity, and associated anisotropic ratio data obtained for messmate were extreme or did not follow typical trends and is consequently the most difficult of the four woods to dry in terms of collapse and checking degradation. © The State of Queensland, Department of Agriculture, Fisheries and Forestry, 2012.
Resumo:
Acoustic sensors provide an effective means of monitoring biodiversity at large spatial and temporal scales. They can continuously and passively record large volumes of data over extended periods, however these data must be analysed to detect the presence of vocal species. Automated analysis of acoustic data for large numbers of species is complex and can be subject to high levels of false positive and false negative results. Manual analysis by experienced users can produce accurate results, however the time and effort required to process even small volumes of data can make manual analysis prohibitive. Our research examined the use of sampling methods to reduce the cost of analysing large volumes of acoustic sensor data, while retaining high levels of species detection accuracy. Utilising five days of manually analysed acoustic sensor data from four sites, we examined a range of sampling rates and methods including random, stratified and biologically informed. Our findings indicate that randomly selecting 120, one-minute samples from the three hours immediately following dawn provided the most effective sampling method. This method detected, on average 62% of total species after 120 one-minute samples were analysed, compared to 34% of total species from traditional point counts. Our results demonstrate that targeted sampling methods can provide an effective means for analysing large volumes of acoustic sensor data efficiently and accurately.
Resumo:
Drosophila serrata is a member of the montium group, which contains more than 98 species and until recently was considered a subgroup within the melanogaster group. This Drosophila species is an emerging model system for evolutionary quantitative genetics and has been used in studies of species borders, clinal variation and sexual selection. Despite the importance of D. serrata as a model for evolutionary research, our poor understanding of its genome remains a significant limitation. Here, we provide a first-generation gene-based linkage map and a physical map for this species. Consistent with previous studies of other drosophilids we observed strong conservation of genes within chromosome arms homologous with D. melanogaster but major differences in within-arm synteny. These resources will be a useful complement to ongoing genome sequencing efforts and QTL mapping studies in this species
Resumo:
We took a comparative approach utilizing clines to investigate the extent to which natural selection may have shaped population divergence in cuticular hydrocarbons (CHCs) that are also under sexual selection in Drosophila. We detected the presence of CHC clines along a latitudinal gradient on the east coast of Australia in two fly species with independent phylogenetic and population histories, suggesting adaptation to shared abiotic factors. For both species, significant associations were detected between clinal variation in CHCs and temperature variation along the gradient, suggesting temperature maxima as a candidate abiotic factor shaping CHC variation among populations. However, rainfall and humidity correlated with CHC variation to differing extents in the two species, suggesting that response to these abiotic factors may vary in a species-specific manner. Our results suggest that natural selection, in addition to sexual selection, plays a significant role in structuring among-population variation in sexually selected traits in Drosophila.
Resumo:
The Capricorn silvereye (Zosterops lateralis chlorocephalus) is ideally suited to investigating the genetic basis of body size evolution. We have isolated and characterized a set of microsatellite markers for this species. Seven out of 11 loci were polymorphic. The number of alleles detected ranged from two to five and observed heterozygosities between 0.12 and 0.67. One locus, ZL49, was found to be sex-linked. This moderate level of diversity is consistent with that expected in an isolated, island population.
Resumo:
Purpose: Exercise increases the production of reactive oxygen species (ROS) in skeletal muscle, and athletes often consume antioxidant supplements in the belief they will attenuate ROS-related muscle damage and fatigue during exercise. However, exercise-induced ROS may regulate beneficial skeletal muscle adaptations, such as increased mitochondrial biogenesis. We therefore investigated the effects of long-term antioxidant supplementation with vitamin E and alpha-lipoic acid on changes in markers of mitochondrial biogenesis in the skeletal muscle of exercise-trained and sedentary rats. Methods: Male Wistar rats were divided into four groups: 1) sedentary control diet, 2) sedentary antioxidant diet, 3) exercise control diet, and 4) exercise antioxidant diet. Animals ran on a treadmill 4 d.wk(-1) at similar to 70% V (over dot)O(2max) for up to 90 min.d(-1) for 14 wk. Results: Consistent with the augmentation of skeletal muscle mitochondrial biogenesis and antioxidant defenses, after training there were significant increases in peroxisome proliferator-activated receptor F coactivator 1 alpha (PGC-1 alpha) messenger RNA (mRNA) and protein, cytochrome C oxidase subunit IV (COX IV) and cytochrome C protein abundance, citrate synthase activity, Nfe2l2, and SOD2 protein (P < 0.05). Antioxidant supplementation reduced PGC-1 alpha mRNA, PGC-1 alpha and COX IV protein, and citrate synthase enzyme activity (P < 0.05) in both sedentary and exercise-trained rats. Conclusions: Vitamin E and alpha-lipoic acid supplementation suppresses skeletal muscle mitochondrial biogenesis, regardless of training status.
Resumo:
Siamese mud carp (Henichorynchus siamensis) is a freshwater teleost of high economic importance in the Mekong River Basin. However, genetic data relevant for delineating wild stocks for management purposes currently are limited for this species. Here, we used 454 pyrosequencing to generate a partial genome survey sequence (GSS) dataset to develop simple sequence repeat (SSR) markers from H. siamensis genomic DNA. Data generated included a total of 65,954 sequence reads with average length of 264 nucleotides, of which 2.79% contain SSR motifs. Based on GSS-BLASTx results, 10.5% of contigs and 8.1% singletons possessed significant similarity (E value < 10–5) with the majority matching well to reported fish sequences. KEGG analysis identified several metabolic pathways that provide insights into specific potential roles and functions of sequences involved in molecular processes in H. siamensis. Top protein domains detected included reverse transcriptase and the top putative functional transcript identified was an ORF2-encoded protein. One thousand eight hundred and thirty seven sequences containing SSR motifs were identified, of which 422 qualified for primer design and eight polymorphic loci have been tested with average observed and expected heterozygosity estimated at 0.75 and 0.83, respectively. Regardless of their relative levels of polymorphism and heterozygosity, microsatellite loci developed here are suitable for further population genetic studies in H. siamensis and may also be applicable to other related taxa.
Resumo:
Members of the Calliphoridae (blowflies) are significant for medical and veterinary management, due to the ability of some species to consume living flesh as larvae, and for forensic investigations due to the ability of others to develop in corpses. Due to the difficulty of accurately identifying larval blowflies to species there is a need for DNA-based diagnostics for this family, however the widely used DNA-barcoding marker, cox1, has been shown to fail for several groups within this family. Additionally, many phylogenetic relationships within the Calliphoridae are still unresolved, particularly deeper level relationships. Sequencing whole mt genomes has been demonstrated both as an effective method for identifying the most informative diagnostic markers and for resolving phylogenetic relationships. Twenty-seven complete, or nearly so, mt genomes were sequenced representing 13 species, seven genera and four calliphorid subfamilies and a member of the related family Tachinidae. PCR and sequencing primers developed for sequencing one calliphorid species could be reused to sequence related species within the same superfamily with success rates ranging from 61% to 100%, demonstrating the speed and efficiency with which an mt genome dataset can be assembled. Comparison of molecular divergences for each of the 13 protein-coding genes and 2 ribosomal RNA genes, at a range of taxonomic scales identified novel targets for developing as diagnostic markers which were 117–200% more variable than the markers which have been used previously in calliphorids. Phylogenetic analysis of whole mt genome sequences resulted in much stronger support for family and subfamily-level relationships. The Calliphoridae are polyphyletic, with the Polleninae more closely related to the Tachinidae, and the Sarcophagidae are the sister group of the remaining calliphorids. Within the Calliphoridae, there was strong support for the monophyly of the Chrysomyinae and Luciliinae and for the sister-grouping of Luciliinae with Calliphorinae. Relationships within Chrysomya were not well resolved. Whole mt genome data, supported the previously demonstrated paraphyly of Lucilia cuprina with respect to L. sericata and allowed us to conclude that it is due to hybrid introgression prior to the last common ancestor of modern sericata populations, rather than due to recent hybridisation, nuclear pseudogenes or incomplete lineage sorting.
Resumo:
Background. We have characterised a new highly divergent geminivirus species, Eragrostis curvula streak virus (ECSV), found infecting a hardy perennial South African wild grass. ECSV represents a new genus-level geminivirus lineage, and has a mixture of features normally associated with other specific geminivirus genera. Results. Whereas the ECSV genome is predicted to express a replication associated protein (Rep) from an unspliced complementary strand transcript that is most similar to those of begomoviruses, curtoviruses and topocuviruses, its Rep also contains what is apparently a canonical retinoblastoma related protein interaction motif such as that found in mastreviruses. Similarly, while ECSV has the same unusual TAAGATTCC virion strand replication origin nonanucleotide found in another recently described divergent geminivirus, Beet curly top Iran virus (BCTIV), the rest of the transcription and replication origin is structurally more similar to those found in begomoviruses and curtoviruses than it is to those found in BCTIV and mastreviruses. ECSV also has what might be a homologue of the begomovirus transcription activator protein gene found in begomoviruses, a mastrevirus-like coat protein gene and two intergenic regions. Conclusion. Although it superficially resembles a chimaera of geminiviruses from different genera, the ECSV genome is not obviously recombinant, implying that the features it shares with other geminiviruses are those that were probably present within the last common ancestor of these viruses. In addition to inferring how the ancestral geminivirus genome may have looked, we use the discovery of ECSV to refine various hypotheses regarding the recombinant origins of the major geminivirus lineages. © 2009 Varsani et al; licensee BioMed Central Ltd.
Resumo:
Psittacine beak and feather disease (PBFD) has a broad host range and is widespread in wild and captive psittacine populations in Asia, Africa, the Americas, Europe and Australasia. Beak and feather disease circovirus (BFDV) is the causative agent. BFDV has an ~2 kb single stranded circular DNA genome encoding just two proteins (Rep and CP). In this study we provide support for demarcation of BFDV strains by phylogenetic analysis of 65 complete genomes from databases and 22 new BFDV sequences isolated from infected psittacines in South Africa. We propose 94% genome-wide sequence identity as a strain demarcation threshold, with isolates sharing > 94% identity belonging to the same strain, and strain subtypes sharing> 98% identity. Currently, BFDV diversity falls within 14 strains, with five highly divergent isolates from budgerigars probably representing a new species of circovirus with three strains (budgerigar circovirus; BCV-A, -B and -C). The geographical distribution of BFDV and BCV strains is strongly linked to the international trade in exotic birds; strains with more than one host are generally located in the same geographical area. Lastly, we examined BFDV and BCV sequences for evidence of recombination, and determined that recombination had occurred in most BFDV and BCV strains. We established that there were two globally significant recombination hotspots in the viral genome: the first is along the entire intergenic region and the second is in the C-terminal portion of the CP ORF. The implications of our results for the taxonomy and classification of circoviruses are discussed. © 2011 SGM.
Resumo:
The African streak viruses (AfSVs) are a diverse group of mastrevirus species (family Geminiviridae) that infect a wide variety of annual and perennial grass species across the African continent and its nearby Indian Ocean islands. Six AfSV species (of which maize streak virus is the best known) have been described. Here we report the full genome sequences of eight isolates of a seventh AfSV species: Urochloa streak virus (USV), sampled from various locations in Nigeria. Despite there being good evidence of recombination in many other AfSV species, we found no convincing evidence that any of the USV sequences were either inter- or intra-species recombinants. The USV isolates, all of which appear to be variants of the same strain (their genome sequences are all more than 98% identical), share less than 69% nucleotide sequence identity with other currently described AfSV species. © 2008 Springer-Verlag.
Resumo:
A proposal has been posted on the ICTV website (2011. 001aG. N. v1. binomial_sp_names) to replace virus species names by non-Latinized binomial names consisting of the current italicized species name with the terminal word "virus" replaced by the italicized and non-capitalized genus name to which the species belongs. If implemented, the current italicized species name Measles virus, for instance, would become Measles morbillivirus while the current virus name measles virus and its abbreviation MeV would remain unchanged. The rationale for the proposed change is presented. © 2010 Springer-Verlag.