981 resultados para Esmalte dentário, dureza
Resumo:
Descriptive and quantitative study, with the objective of review the positive and negative aspects experienced by professionals working in the Family Health Strategy (ESF) of Ceará-Mirim town, at Rio Grande do Norte state. The population included 190 healthcare professionals that integrate the family healthcare staff and the data-collection occurred in a meeting at their workplace, with the implementation of a questionnaire. Results were organized in Microsoft Excel spreadsheet software, with descriptive statistical analysis in tables, graphs and tables through frequencies, averages values and standard deviations. There is a predominance of females (n = 137) and higher rates in almost all professions, and higher average age (38.9%, SD = 7.8) and income wage (average = 10) in the medical category. Regarding the more developed activities, for physicians and nurses are the healthcare actions in the Unit, the oral hygiene for dentists, the immunization for auxiliary nurses (Aux-N), educational meeting for the dental office assistants (ACD), and home visitations to community-based health workers (ACS). About the easiness of work, 93.2% said to be presence of professionals with a personal profile in public healthcare; about the difficulties, 86.8% of professionals cited the unavailability of material, followed by salary range reported by nurses (80.9% ), dentists (80.0%), physicians (73.3%), ACS (83.1%), and Aux-N (90.5%). In relation to working conditions, the unavailability of materials was the most mentioned, with the exception of dentists who reported improvement in wages. We still identify among these difficulties: the drugs availability regarded as first grade obstacle by ACS and physicians, the type of contracts in second grade cited by the ACD and dentists and, in third grade, the salary range cited by dentists and auxiliary nurses. It is concluded that the difficulties and easiness faced by ESF professionals are divergent among themselves. For physicians and nurses, whose healthcare actions become directed to specific groups, the individual and the family, their difficulties relate to the unavailability of materials. For dentists, whose actions more quoted were topical application of fluoride and supervised toothbrush, their greatest difficulty is the salary range. As to the Aux-N, ACD and ACS, for all of them the unavailability of materials has hindered the implementation of their activities in ESF
Resumo:
Com o objetivo de verificar a influência de remanescentes de vegetação ciliar e da ação antrópica na qualidade da água, estudaram-se quatro nascentes, sendo duas com a presença de vegetação natural remanescente e duas com predominância de atividades agrícolas. Essas nascentes fazem parte da bacia hidrográfica do Córrego Rico, estando localizadas nos municípios de Taquaritinga e de Guariba - SP, em duas classes de solo: Argissolo e Latossolo, respectivamente. Definiram-se pontos de coleta da água nas nascentes e ao longo dos cursos d'água (entre 0 a 50 m da nascente), em dois períodos (chuvoso e seco). Foram analisadas as seguintes variáveis: cor, pH, temperatura, turbidez, alcalinidade, dureza total, dureza em magnésio, dureza em cálcio, fósforo, nitrogênio e demanda bioquímica de oxigênio. de maneira geral, ocorreu agrupamento por nascentes e também por períodos, confirmando que os períodos de amostragem, assim como as características e diferentes usos do solo influenciam na qualidade da água das microbacias. As variáveis cor, turbidez, alcalinidade e nitrogênio total foram as que apresentaram maior importância relativa nas variáveis canônicas.
Resumo:
O Z. joazeiro é uma espécie florestal de grande importância socioeconômica para a Região Nordeste do Brasil e apresenta dificuldades na germinação das unidades de dispersão, causada pela impermeabilidade à água. Este estudo avaliou tratamentos pré-germinativos de superação de dormência de unidades de dispersão de Z. joazeiro. O experimento foi conduzido em casa de vegetação, no Centro de Ciências Agrárias da Universidade Federal da Paraíba, em Areia, PB, Brasil. Os tratamentos consistiram em: testemunha (unidades de dispersão intactas), escarificação mecânica com lixa d'água, imersão em água, à temperatura ambiente, por 24, 48, 72, 96 e 120 h, imersão em água à temperatura de 70 ºC, por 3 min, e imersão em ácido sulfúrico concentrado por 30, 60, 90, 120 e 150 min. As variáveis avaliadas foram porcentagem de emergência, primeira contagem e velocidade de emergência, comprimento e massa seca de plantas. Os tratamentos que propiciaram máxima emergência de plântulas de Z. joazeiro foram imersão de unidades de dispersão em água fria por 48 h, imersão em água a 70 ºC por 3 min e escarificação manual com lixa, por superar a dureza tegumentar das unidades de dispersão dessa espécie.
Resumo:
Hard metals are the composite developed in 1923 by Karl Schröter, with wide application because high hardness, wear resistance and toughness. It is compound by a brittle phase WC and a ductile phase Co. Mechanical properties of hardmetals are strongly dependent on the microstructure of the WC Co, and additionally affected by the microstructure of WC powders before sintering. An important feature is that the toughness and the hardness increase simultaneously with the refining of WC. Therefore, development of nanostructured WC Co hardmetal has been extensively studied. There are many methods to manufacture WC-Co hard metals, including spraying conversion process, co-precipitation, displacement reaction process, mechanochemical synthesis and high energy ball milling. High energy ball milling is a simple and efficient way of manufacturing the fine powder with nanostructure. In this process, the continuous impacts on the powders promote pronounced changes and the brittle phase is refined until nanometric scale, bring into ductile matrix, and this ductile phase is deformed, re-welded and hardened. The goal of this work was investigate the effects of highenergy milling time in the micro structural changes in the WC-Co particulate composite, particularly in the refinement of the crystallite size and lattice strain. The starting powders were WC (average particle size D50 0.87 μm) supplied by Wolfram, Berglau-u. Hutten - GMBH and Co (average particle size D50 0.93 μm) supplied by H.C.Starck. Mixing 90% WC and 10% Co in planetary ball milling at 2, 10, 20, 50, 70, 100 and 150 hours, BPR 15:1, 400 rpm. The starting powders and the milled particulate composite samples were characterized by X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) to identify phases and morphology. The crystallite size and lattice strain were measured by Rietveld s method. This procedure allowed obtaining more precise information about the influence of each one in the microstructure. The results show that high energy milling is efficient manufacturing process of WC-Co composite, and the milling time have great influence in the microstructure of the final particles, crushing and dispersing the finely WC nanometric order in the Co particles
Resumo:
The hardness test is thoroughly used in research and evaluation of materials for quality control. However, this test results are subject to uncertainties caused by the process operator in the moment of the mensuration impression diagonals make by the indenter in the sample. With this mind, an automated equipment of hardness mensuration was developed. The hardness value was obtained starting from the mensuration of plastic deformation suffered by the material to a well-known load. The material deformation was calculated through the mensuration of the difference between the progress and retreat of a diamond indenter on the used sample. It was not necessary, therefore, the manual mensuration of the diagonals, decreasing the mistake source caused by the operator. Tension graphs of versus deformation could be analyzed from data obtained by the accomplished analysis, as well as you became possible a complete observation of the whole process. Following, the hardness results calculated by the experimental apparatus were compared with the results calculated by a commercial microhardness machine with the intention of testing its efficiency. All things considered, it became possible the materials hardness mensuration through an automated method, which minimized the mistakes caused by the operator and increased the analysis reliability
Resumo:
Present work proposed to map and features the wear mechanisms of structural polymers of engineering derived of the sliding contact with a metallic cylindrical spindle submitted to eccentricity due to fluctuations in it is mass and geometric centers. For this it was projected and makes an experimental apparatus from balancing machine where the cylindrical counterbody was supported in two bearings and the polymeric coupon was situated in a holder with freedom of displacement along counterbody. Thus, the experimental tests were standardized using two position of the two bearings (Fixed or Free) and seven different positions along the counterbody, that permit print different conditions to the stiffness from system. Others parameters as applied normal load, sliding velocity and distance were fixed. In this investigation it was used as coupon two structural polymers of wide quotidian use, PTFE (polytetrafluroethylene) and PEEK (poly-ether-ether-ketone) and the AISI 4140 alloy steel as counterbody. Polymeric materials were characterized by thermal analysis (thermogravimetric, differential scanning calorimetry and dynamic-mechanical), hardness and rays-X diffractometry. While the metallic material was submitted at hardness, mechanical resistance tests and metallographic analysis. During the tribological tests were recorded the heating response with thermometers, yonder overall velocity vibration (VGV) and the acceleration using accelerometers. After tests the wear surface of the coupons were analyzed using a Scanning Electronic Microscopy (SEM) to morphological analysis and spectroscopy EDS to microanalysis. Moreover the roughness of the counterbody was characterized before and after the tribological tests. It was observed that the tribological response of the polymers were different in function of their distinct molecular structure. It were identified the predominant wear mechanisms in each polymer. The VGV of the PTFE was smaller than PEEK, in the condition of minimum stiffness, in function of the higher loss coefficient of that polymer. Wear rate of the PTFE was more of a magnitude order higher than PEEK. With the results was possible developed a correlation between the wear rate and parameter (E/ρ)1/2 (Young modulus, E, density, ρ), proportional at longitudinal elastic wave velocity in the material.
Resumo:
Low cost seals are made of NBR, Nitrile Butadiene Rubber, a family of unsaturated copolymers that is higher resistant to oils the more content of nitrile have in its composition, although lower its flexibility. In Petroleum Engineering, NBR seal wear can cause fluid leakage and environmental damages, promoting an increasing demand for academic knowledge about polymeric materials candidate to seals submitted to sliding contacts to metal surfaces. This investigation aimed to evaluate tribological responses of a commercial NBR, hardness 73 ± 5 Sh A, polytetrafluoroethylene (PTFE), hardness 60 ± 4 HRE and PTFE with graphite, 68 ± 6 HRE. The testings were performed on a sliding tribometer conceived to explore the tribological performance of stationary polymer plane coupons submitted to rotational cylinder contact surface of steel AISI 52100, 20 ± 1 HRC Hardness, under dry and lubricated (oil SAE 15W40) conditions. After screening testings, the normal load, relative velocity and sliding distance were 3.15 N, 0.8 m/s and 3.2 km, respectively. The temperatures were collected over distances of 3.0±0.5 mm and 750±50 mm far from the contact to evaluate the heating in this referential zone due to contact sliding friction by two thermocouples K type. The polymers were characterized through Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). The wear mechanisms of the polymer surfaces were analyzed by Scanning Electron Microscopy (SEM) and EDS (Energy-Dispersive X-ray Spectroscopy). NBR referred to the higher values of heating, suggesting higher sliding friction. PTFE and PTFE with graphite showed lower heating, attributed to the delamination mechanism
Resumo:
In recent years there has been a significant growth in technologies that modify implant surfaces, reducing healing time and allowing their successful use in areas with low bone density. One of the most widely used techniques is plasma nitration, applied with excellent results in titanium and its alloys, with greater frequency in the manufacture of hip, ankle and shoulder implants. However, its use in dental implants is very limited due to high process temperatures (between 700 C o and 800 C o ), resulting in distortions in these geometrically complex and highly precise components. The aim of the present study is to assess osseointegration and mechanical strength of grade II nitrided titanium samples, through configuration of hollow cathode discharge. Moreover, new formulations are proposed to determine the optimum structural topology of the dental implant under study, in order to perfect its shape, make it efficient, competitive and with high definition. In the nitriding process, the samples were treated at a temperature of 450 C o and pressure of 150 Pa , during 1 hour of treatment. This condition was selected because it obtains the best wettability results in previous studies, where different pressure, temperature and time conditions were systematized. The samples were characterized by X-ray diffraction, scanning electron microscope, roughness, microhardness and wettability. Biomechanical fatigue tests were then conducted. Finally, a formulation using the three dimensional structural topology optimization method was proposed, in conjunction with an hadaptive refinement process. The results showed that plasma nitriding, using the hollow cathode discharge technique, caused changes in the surface texture of test specimens, increases surface roughness, wettability and microhardness when compared to the untreated sample. In the biomechanical fatigue test, the treated implant showed no flaws, after five million cycles, at a maximum fatigue load of 84.46 N. The results of the topological optimization process showed well-defined optimized layouts of the dental implant, with a clear distribution of material and a defined edge
Resumo:
The competitiveness of the trade generated by the higher availability of products with lower quality and cost promoted a new reality of industrial production with small clearances. Track deviations at the production are not discarded, uncertainties can statistically occur. The world consumer and the Brazilian one are supported by the consumer protection code, in lawsuits against the products poor quality. An automobile is composed of various systems and thousands of constituent parts, increasing the likelihood of failure. The dynamic and security systems are critical in relation to the consequences of possible failures. The investigation of the failure gives us the possibility of learning and contributing to various improvements. Our main purpose in this work is to develop a systematic, specific methodology by investigating the root cause of the flaw occurred on an axle end of the front suspension of an automobile, and to perform comparative data analyses between the fractured part and the project information. Our research was based on a flaw generated in an automotive suspension system involved in a mechanical judicial cause, resulting in property and personal damages. In the investigations concerning the analysis of mechanical flaws, knowledge on materials engineering plays a crucial role in the process, since it enables applying techniques for characterizing materials, relating the technical attributes required from a respective part with its structure of manufacturing material, thus providing a greater scientific contribution to the work. The specific methodology developed follows its own flowchart. In the early phase, the data in the records and information on the involved ones were collected. The following laboratory analyses were performed: macrography of the fracture, micrography with SEM (Scanning Electron Microscope) of the initial and final fracture, phase analysis with optical microscopy, Brinell hardness and Vickers microhardness analyses, quantitative and qualitative chemical analysis, by using X-ray fluorescence and optical spectroscopy for carbon analysis, qualitative study on the state of tension was done. Field data were also collected. In the analyses data of the values resulting from the fractured stock parts and the design values were compared. After the investigation, one concluded that: the developed methodology systematized the investigation and enabled crossing data, thus minimizing diagnostic error probability, the morphology of the fracture indicates failure by the fatigue mechanism in a geometrically propitious location, a tension hub, the part was subjected to low tensions by the sectional area of the final fracture, the manufacturing material of the fractured part has low ductility, the component fractured in an earlier moment than the one recommended by the manufacturer, the percentages of C, Si, Mn and Cr of the fractured part present values which differ from the design ones, the hardness value of the superior limit of the fractured part is higher than that of the design, and there is no manufacturing uniformity between stock and fractured part. The work will contribute to optimizing the guidance of the actions in a mechanical engineering judicial expertise
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The use of composite materials and alternative is being increased every day, as it becomes more widespread awareness that the use of renewable and not harmful to the environment is part of a new environmentally friendly model. Since its waste (primarily fiberglass) can not be easily recycled by the difficulty that still exists in this process, since they have two phases mixed, a polymeric matrix thermoset difficult to recycle because it is infusible and phase of fiber reinforcements. Thermoset matrix composites like Polyester + fiberglass pose a threat due to excessive discharge. Aiming to minimize this problem, aimed to reuse the composite Polyester + fiber glass, through the wastes obtained by the grinding of knifes and balls. These residues were incorporated into the new composite Polyester/Fiberglass for hot compression mold and compared tribological to composites with filler CaCO3, generally used as filler, targeting a partial replacement of CaCO3 by such waste. The composites were characterized by thermal analysis (TGA, DSC and DMA), by the surface integrity (roughness determination, contact angle and surface energy), mechanical properties (hardness) and tribological tests (wear and coefficient of dynamic friction) in order to evaluate the effect of loads and characterize these materials for applications that can take, in the tribological point of view since waste Polyester + fiberglass has great potential for replacement of CaCO3
Resumo:
Wear mechanisms and thermal history of two non-conforming sliding surfaces was investigated in laboratory. A micro-abrasion testing setup was used but the traditional rotative sphere method was substituted by a cylindrical surface of revolution which included seven sharp angles varying between 15o to 180o. The micro-abrasion tests lead to the investigation on the polyurethane response at different contact pressures. For these turned counterfaces with and without heat treatment. Normal load and sliding speeds were changed. The sliding distance was fixed at 5 km in each test. The room and contact temperatures were measured during the tests. The polyurethane was characterized using tensile testing, hardness Shore A measurement, Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and Thermomechanical Analyze (TMA). The Vickers micro-hardness of the steel was measured before and after the heat treatment and the metallographic characterization was also carried out. Worn surface of polyurethane was analysed using Scanning Electron Microscope (SEM) and EDS (Electron Diffraction Scanning) microanalyses. Single pass scratch testing in polyurethane using indenters with different contact angles was also carried out. The scar morphology of the wear, the wear mechanism and the thermal response were analyzed in order to correlate the conditions imposed by the pressure-velocity pair to the materials in contact. Eight different wear mechanisms were identified on the polyurethane surface. It was found correlation between the temperature variation and the wear scar morphology.
Resumo:
Composites based on PEEK + PTFE + CARBON FIBER + Graphite (G_CFRP) has increased application in the top industries, as Aerospace, Aeronautical, Petroleum, Biomedical, Mechanical and Electronics Engineering challenges. A commercially available G_CFRP was warmed up to three different levels of thermal energy to identify the main damage mechanisms and some evidences for their intrinsic transitions. An experimental test rig for systematize a heat flux was developed in this dissertation, based on the Joule Effect. It was built using an isothermal container, an internal heat source and a real-time measurement system for test a sample by time. A standard conical-cylindrical tip was inserted into a soldering iron, commercially available and identified by three different levels of nominal electrical power, 40W (manufacturer A), 40W (manufacturer B), 100W and 150W, selected after screening tests: these power levels for the heat source, after one hour of heating and one hour of cooling in situ, carried out three different zones of degradation in the composite surface. The bench was instrumented with twelve thermocouples, a wattmeter and a video camera. The twelve specimens tested suffered different degradation mechanisms, analyzed by DSC (Differential Scanning Calorimetry) and TG (Thermogravimetry) techniques, Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Rays (EDX) Analysis. Before and after each testing, it was measured the hardness of the sample by HRM (Hardness Rockwell M). Excellent correlations (R2=1) were obtained in the plots of the evaporated area after one hour of heating and one hour of cooling in situ versus (1) the respective power of heat source and (2) the central temperature of the sample. However, as resulting of the differential degradation of G_CFRP and their anisotropy, confirmed by their variable thermal properties, viscoelastic and plastic properties, there were both linear and non-linear behaviour between the temperature field and Rockwell M hardness measured in the radial and circumferential directions of the samples. Some morphological features of the damaged zones are presented and discussed, as, for example, the crazing and skeletonization mechanism of G_CFRP
Resumo:
A mucuna-preta, leguminosa empregada como adubação verde e forrageira, produz sementes com dormência causada pela impermeabilidade do tegumento à água (dureza). O objetivo do trabalho foi estudar as relações entre a secagem das sementes no interior das vagens e a ocorrência desse fenômeno. Para tanto, nas colheitas realizadas semanalmente entre 40 e 89 dias após o florescimento, foram obtidas sementes de vagens submetidas ou não à secagem. Foram realizadas determinações de teor de água das sementes na colheita, coloração nas vagens e nas sementes no momento da colheita, condutividade elétrica, germinação e presença de sementes duras. A secagem das sementes nas vagens, separadas da planta-mãe, favorece o surgimento da dureza; essa ocorrência, contudo, é atenuada com o retardamento da referida separação.
Resumo:
The technique of ion nitriding, despite being fully consolidated in the industry, has great limitations when applied to the treatment of small parts. This is because effects that occur due to non-uniformity of the electric field, generate localized heating in parts, damaging the uniformity of nitrided layer. In addition, because the samples are treated static parts thereof are untreated. To expand the use of plasma nitriding, this work presents the development, assembly and testing of a prototype plasma reactor with rotatory cathodic cage [patent pending], able to meet these needs, giving the material a uniform treatment and opening doors to industrial scale production. The samples tested with hexagonal nuts are 6.0 mm in diameter, made of stainless steel AISI 304 nitrided at a pressure of 1 mbar in an atmosphere of 20% H2 + 80% N2 for 1 h. After treatment, testing visual inspection, optical microscopy and microhardness were carried out to check the effectiveness of the process for uniformity and hardness of the parts. All samples exhibited uniform color, and matte brownish, unlike the untreated samples, silver color and gloss. The hardness of the surface (top and sides) was 65% and even higher than the original hardness. The nitrided layer showed great uniformity in microstructure and thickness. It is concluded, therefore, that the unit was effective constructed for the purposes for which it was designed