973 resultados para Equatorial
Resumo:
The El Nino/Southern Oscillation phenomenon, characterized by anomalous sea surface temperatures and winds in the tropical Pacific, affects climate across the globe(1). El Ninos occur every 2-7 years, whereas the El Nino/Southern Oscillation itself varies on decadal timescales in frequency and amplitude, with a different spatial pattern of surface anomalies(2) each time the tropical Pacific undergoes a regime shift. Recent work has shown that Bjerknes feedback(3,4) (coupling of the atmosphere and the ocean through changes in equatorial winds driven by changes in sea surface temperature owing to suppression of equatorial upwelling in the east Pacific) is not necessary(5) for the development of an El Nino. Thus it is unclear what remains constant through regimes and is crucial for producing the anomalies recognized as El Nino. Here we show that the subsurface process of discharging warm waters always begins in the boreal summer/autumn of the year before the event (up to 18 months before the peak) independent of regimes, identifying the discharge process as fundamental to the El Nino onset. It is therefore imperative that models capture this process accurately to further our theoretical understanding, improve forecasts and predict how the El Nino/Southern Oscillation may respond to climate change.
Resumo:
Precise specification of the vertical distribution of cloud optical properties is important to reduce the uncertainty in quantifying the radiative impacts of clouds. The new global observations of vertical profiles of clouds from the CloudSat mission provide opportunities to describe cloud structures and to improve parameterization of clouds in the weather and climate prediction models. In this study, four years (2007-2010) of observations of vertical structure of clouds from the CloudSat cloud profiling radar have been used to document the mean vertical structure of clouds associated with the Indian summer monsoon (ISM) and its intra-seasonal variability. Active and break monsoon spells associated with the intra-seasonal variability of ISM have been identified by an objective criterion. For the present analysis, we considered CloudSat derived column integrated cloud liquid and ice water, and vertically profiles of cloud liquid and ice water content. Over the South Asian monsoon region, deep convective clouds with large vertical extent (up to 14 km) and large values of cloud water and ice content are observed over the north Bay of Bengal. Deep clouds with large ice water content are also observed over north Arabian Sea and adjoining northwest India, along the west coast of India and the south equatorial Indian Ocean. The active monsoon spells are characterized by enhanced deep convection over the Bay of Bengal, west coast of India and northeast Arabian Sea and suppressed convection over the equatorial Indian Ocean. Over the Bay of Bengal, cloud liquid water content and ice water content is enhanced by similar to 90 and similar to 200 % respectively during the active spells. An interesting feature associated with the active spell is the vertical tilting structure of positive CLWC and CIWC anomalies over the Arabian Sea and the Bay of Bengal, which suggests a pre-conditioning process for the northward propagation of the boreal summer intra-seasonal variability. It is also observed that during the break spells, clouds are not completely suppressed over central India. Instead, clouds with smaller vertical extent (3-5 km) are observed due to the presence of a heat low type of circulation. The present results will be useful for validating the vertical structure of clouds in weather and climate prediction models.
Resumo:
Intraseasonal time-scales play an important role in tropical variability. Two modes that contribute significantly to tropical intraseasonal variability (ISV) are the eastward-propagating MaddenJulian Oscillation (MJO), and westward-moving moist equatorial Rossby waves. This note reports on a correspondence between the longitudinal gradient of mean tropical precipitable water (PW), and the geographical regions of genesis, and convective activity, of both these large-scale tropical systems. Our finding is based on an analysis of PW from the MERRA reanalysis product. The data indicate that the mean tropical PW has a dominant wavenumber two (three) structure in longitude in the Northern (Southern) Hemisphere. Departures from a longitudinally homogeneous state are attributed to the influence of subtropical anticyclones, and are accentuated by monsoonal regions of both hemispheres. This mean structure results in a sharply localized longitudinal gradient of PW. Remarkably, regions with positive gradients (such as the Northern and Southern Hemisphere western Indian Ocean), i.e. they have larger PW to the east, are the very zones that are implicated in the formation, and show high levels of convective activity, of the eastward-moving MJO. On the other hand, regions with negative gradients (such as the Southern Hemisphere central Pacific) are the very regions where genesis, and maxima in variance, of westward-moving moist equatorial Rossby waves are known to occur. Apart from providing a first-order longitudinal footprint of the convective phase of these systems, this correspondence reinforces the role of the mean climatic state in tropical ISV. Copyright (c) 2012 Royal Meteorological Society
Resumo:
Using continuous and near-real time measurements of the mass concentrations of black carbon (BC) aerosols near the surface, for a period of 1 year (from January to December 2006) from a network of eight observatories spread over different environments of India, a space-time synthesis is generated. The strong seasonal variations observed, with a winter high and summer low, are attributed to the combined effects of changes in synoptic air mass types, modulated strongly by the atmospheric boundary layer dynamics. Spatial distribution shows much higher BC concentration over the Indo-Gangetic Plain (IGP) than the peninsular Indian stations. These were examined against the simulations using two chemical transport models, GOCART (Goddard Global Ozone Chemistry Aerosol Radiation and Transport) and CHIMERE for the first time over Indian region. Both the model simulations significantly deviated from the measurements at all the stations; more so during the winter and pre-monsoon seasons and over mega cities. However, the CHIMERE model simulations show better agreement compared with the measurements. Notwithstanding this, both the models captured the temporal variations; at seasonal and subseasonal timescales and the natural variabilities (intra-seasonal oscillations) fairly well, especially at the off-equatorial stations. It is hypothesized that an improvement in the atmospheric boundary layer (ABL) parameterization scheme for tropical environment might lead to better results with GOCART.
Resumo:
In order to meet the ever growing demand for the prediction of oceanographic parametres in the Indian Ocean for a variety of applications, the Indian National Centre for Ocean Information Services (INCOIS) has recently set-up an operational ocean forecast system, viz. the Indian Ocean Forecast System (INDOFOS). This fully automated system, based on a state-of-the-art ocean general circulation model issues six-hourly forecasts of the sea-surface temperature, surface currents and depths of the mixed layer and the thermocline up to five-days of lead time. A brief account of INDOFOS and a statistical validation of the forecasts of these parametres using in situ and remote sensing data are presented in this article. The accuracy of the sea-surface temperature forecasts by the system is high in the Bay of Bengal and the Arabian Sea, whereas it is moderate in the equatorial Indian Ocean. On the other hand, the accuracy of the depth of the thermocline and the isothermal layers and surface current forecasts are higher near the equatorial region, while it is relatively lower in the Bay of Bengal.
Resumo:
An analysis of the retrospective predictions by seven coupled ocean atmosphere models from major forecasting centres of Europe and USA, aimed at assessing their ability in predicting the interannual variation of the Indian summer monsoon rainfall (ISMR), particularly the extremes (i.e. droughts and excess rainfall seasons) is presented in this article. On the whole, the skill in prediction of extremes is not bad since most of the models are able to predict the sign of the ISMR anomaly for a majority of the extremes. There is a remarkable coherence between the models in successes and failures of the predictions, with all the models generating loud false alarms for the normal monsoon season of 1997 and the excess monsoon season of 1983. It is well known that the El Nino and Southern Oscillation (ENSO) and the Equatorial Indian Ocean Oscillation (EQUINOO) play an important role in the interannual variation of ISMR and particularly the extremes. The prediction of the phases of these modes and their link with the monsoon has also been assessed. It is found that models are able to simulate ENSO-monsoon link realistically, whereas the EQUINOO-ISMR link is simulated realistically by only one model the ECMWF model. Furthermore, it is found that in most models this link is opposite to the observed, with the predicted ISMR being negatively (instead of positively) correlated with the rainfall over the western equatorial Indian Ocean and positively (instead of negatively) correlated with the rainfall over the eastern equatorial Indian Ocean. Analysis of the seasons for which the predictions of almost all the models have large errors has suggested the facets of ENSO and EQUINOO and the links with the monsoon that need to be improved for improving monsoon predictions by these models.
Resumo:
2,3-Unsaturated 3-arylsulfinyl pyranosides undergo nucleophilic additions at C-2, with facial selectivities depending on the nucleophile and the substituent on sulfinyl sulfur. The reactions of such sugar vinyl sulfoxides lead to the addition of nucleophile preferring an axial orientation at C-2, with concomitant formation of an allylic bond at C-3 to C-4. This trend in the addition pattern is observed for primary amine, carbon and sulfur nucleophiles, whereas secondary amines prefer an equatorial addition at C-2. The effect of p-tolylthio-versus (p-isopropylphenyl)thio vinyl sulfoxide is that the equatorial nucleophilic addition is preferred even more with the latter vinyl sulfoxide. (C) 2013 Published by Elsevier Ltd.
Resumo:
The simulation of precipitation in a general circulation model relying on relaxed mass flux cumulus parameterization scheme is sensitive to cloud adjustment time scale (CATS). In this study, the frequency of the dominant intra-seasonal mode and interannual variability of Indian summer monsoon rainfall (ISMR) simulated by an atmospheric general circulation model is shown to be sensitive to the CATS. It has been shown that a longer CATS of about 5 h simulates the spatial distribution of the ISMR better. El Nio Southern Oscillation-ISMR relationship is also sensitive to CATS. The equatorial Indian Ocean rainfall and ISMR coupling is sensitive to CATS. Our study suggests that a careful choice of CATS is necessary for adequate simulation of spatial pattern as well as interannual variation of Indian summer monsoon precipitation.
Resumo:
The effect of meridional variation of sea surface temperature (SST) on tropical atmospheric circulation is analyzed using Aqua-planet Experiment (APE) simulations. The meridional SST gradient around the narrow SST peak in CONTROL simulation favours a strong and single equatorial Intertropical Convergence Zone (ITCZ, defined by the maximum of zonally averaged total precipitation) in all APE models. In contrast, flat equatorial SST peak (FLAT simulation) favours split/double ITCZs flanking the SST maximum, in the majority of the APE models. Although there is reasonable agreement for SST sensitivity of ITCZ among the APE models in CONTROL, there exists disparity among them in FLAT case. Similarly, while the total and convective precipitation responses are consistent among the models, the large-scale precipitation response shows considerable inter-model variations in FLAT case. The APE intercomparison indicates that the occurrence and positioning of the ITCZ are primarily related to boundary layer moisture convergence as a response to the meridional variation of SST. Furthermore, the meridional gradient of tropospheric temperature is found to be an important factor that can influence the positioning of ITCZ. FLAT SST distribution is found to be similar to the observed distribution over the Indian region during summer season. Models that yield double ITCZs in this case simulate an easterly jet over the equatorial region (similar to 15 degrees equatorward of the ITCZ). This is analogous to the Tropical Easterly Jet (TEJ), which is a unique feature observed over the Indian region during summer monsoon season, with its core at 12 degrees N, equatorward of the seasonal convergence zone centered along 25 degrees N. In these models, positive meridional temperature gradient and the associated easterly shear in the atmosphere strengthened by moisture convergence penetrate up to the upper troposphere, with which TEJ is in thermal wind balance.
Resumo:
We describe a framework to explore and visualize the movement of cloud systems. Using techniques from computational topology and computer vision, our framework allows the user to study this movement at various scales in space and time. Such movements could have large temporal and spatial scales such as the Madden Julian Oscillation (MJO), which has a spatial scale ranging from 1000 km to 10000 km and time of oscillation of around 40 days. Embedded within these larger scale oscillations are a hierarchy of cloud clusters which could have smaller spatial and temporal scales such as the Nakazawa cloud clusters. These smaller cloud clusters, while being part of the equatorial MJO, sometimes move at speeds different from the larger scale and in a direction opposite to that of the MJO envelope. Hitherto, one could only speculate about such movements by selectively analysing data and a priori knowledge of such systems. Our framework automatically delineates such cloud clusters and does not depend on the prior experience of the user to define cloud clusters. Analysis using our framework also shows that most tropical systems such as cyclones also contain multi-scale interactions between clouds and cloud systems. We show the effectiveness of our framework to track organized cloud system during one such rainfall event which happened at Mumbai, India in July 2005 and for cyclone Aila which occurred in Bay of Bengal during May 2009.
Resumo:
Mono- and trinuclear copper(II) complexes with 2-1-(2-dimethylamino-ethylamino)-ethyl]-phenol (HL) have been synthesized and structurally characterized. The mononuclear complex Cu(L)(H2O)(ONO2)] (1) crystallizes in monoclinic space group P2(1) /n with a square pyramidal Cu(II) center coordinated by the tridentate Schiff base (L) and a water ligand in the equatorial plane and an oxygen atom from nitrate in the axial position. The trinuclear complex (CuL)(3)(mu(3)-OH)](ClO4)(2)center dot H2O (2) crystallizes in hexagonal space group P6(3); all three copper atoms are five-coordinate with square pyramidal geometries. The interactions of these complexes with calf-thymus DNA have been investigated using absorption spectrophotometry. The mononuclear complex binds more strongly than the trinuclear complex. The DNA cleavage activity of these complexes has been studied on double-stranded pBR 322 plasmid DNA by gel electrophoresis experiments in the absence and in the presence of added oxidant (H2O2). The trinuclear complex cleaves DNA more efficiently than the mononuclear complex in the presence of H2O2.
Resumo:
We present a comparison of the Global Ocean Data Assimilation System (GODAS) five-day ocean analyses against in situ daily data from Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA) moorings at locations 90 degrees E, 12 degrees N; 90 degrees E, 8 degrees N; 90 degrees E, 0 degrees N and 90 degrees E, 1.5 degrees S in the equatorial Indian Ocean and the Bay of Bengal during 2002-2008. We find that the GODAS temperature analysis does not adequately capture a prominent signal of Indian Ocean dipole mode of 2006 seen in the mooring data, particularly at 90 degrees E 0 degrees N and 90 degrees E 1.5 degrees S in the eastern India Ocean. The analysis, using simple statistics such as bias and root-mean-square deviation, indicates that standard GODAS temperature has definite biases and significant differences with observations on both subseasonal and seasonal scales. Subsurface salinity has serious deficiencies as well, but this may not be surprising considering the poorly constrained fresh water forcing, and possible model deficiencies in subsurface vertical mixing. GODAS reanalysis needs improvement to make it more useful for study of climate variability and for creating ocean initial conditions for prediction.
Resumo:
In this study, the Tropical Rainfall Measurement Mission based Microwave Imager estimates (2A12) have been used to compare and contrast the characteristics of cloud liquid water and ice over the Indian land region and the ocean surrounding it, during the premonsoon (May) and monsoon (June-September) seasons. Based on the spatial homogeneity of rainfall, we have selected five regions for our study (three over ocean, two over land). Comparison across three ocean regions suggests that the cloud liquid water (CLW) over the orographically influenced Arabian Sea (close to the Indian west coast) behaves differently from the CLW over a trapped ocean (Bay of Bengal) or an open ocean (equatorial Indian Ocean). Specifically, the Arabian Sea region shows higher liquid water for a lower range of rainfall, whereas the Bay of Bengal and the equatorial Indian Ocean show higher liquid water for a higher range of rainfall. Apart from geographic differences, we also documented seasonal differences by comparing CLW profiles between monsoon and premonsoon periods, as well as between early and peak phases of the monsoon. We find that the CLW during the lean periods of rainfall (May or June) is higher than during the peak and late monsoon season (July-September) for raining clouds. As active and break phases are important signatures of the monsoon progression, we also analysed the differences in CLW during various phases of the monsoon, namely, active, break, active-to-break and break-to-active transition phases. We find that the cloud liquid water content during the break-to-active transition phase is significantly higher than during the active-to-break transition phase over central India. We speculate that this could be attributed to higher amount of aerosol loading over this region during the break phase. We lend credence to this aerosol-CLW/rain association by comparing the central Indian CLW with that over southeast Asia (where the aerosol loading is significantly smaller) and find that in the latter region, there are no significant differences in CLW during the different phases of the monsoon. While our hypothesis needs to be further investigated with numerical models, the results presented in this study can potentially serve as a good benchmark in evaluating the performance of cloud resolving models over the Indian region.
Resumo:
GX 301-2, a bright high-mass X-ray binary with an orbital period of 41.5 d, exhibits stable periodic orbital intensity modulations with a strong pre-periastron X-ray flare. Several models have been proposed to explain the accretion at different orbital phases, invoking accretion via stellar wind, equatorial disc, and accretion stream from the companion star. We present results from exhaustive orbital phase resolved spectroscopic measurements of GX 301-2 using data from the Gas Slit Camera onboard MAXI. Using spectroscopic analysis of the MAXI data with unprecedented orbital coverage for many orbits continuously, we have found a strong orbital dependence of the absorption column density and equivalent width of the iron emission line. A very large equivalent width of the iron line along with a small value of the column density in the orbital phase range 0.10-0.30 after the periastron passage indicates the presence of high density absorbing matter behind the neutron star in this orbital phase range. A low energy excess is also found in the spectrum at orbital phases around the pre-periastron X-ray flare. The orbital dependence of these parameters are then used to examine the various models about mode of accretion on to the neutron star in GX 301-2.
Resumo:
The nonlinear response of a spherical shallow water model to an imposed heat source in the presence of realistic zonal mean zonal winds is investigated numerically. The solutions exhibit elongated, meridionally tilted ridges and troughs indicative of a poleward dispersion of wave activity. As the speed of the jets is increased, the equatorial Kelvin wave is unaffected but the global Rossby wave train coalesces to form a compact, amplified quadrupole structure that bears a striking resemblance to the observed upper level structure of the Madden-Julian oscillation. In the presence of strong subtropical westerly jets, the advection of planetary vorticity by the meridional flow and relative vorticity by the zonally averaged background flow conspire to create the distinctive quadrupole configuration of flanking Rossby waves.