921 resultados para Energy dispersive x-ray
Resumo:
Multimetallic shape-controlled nanoparticles offer great opportunities to tune the activity, selectivity, and stability of electrocatalytic surface reactions. However, in many cases, our synthetic control over particle size, composition, and shape is limited requiring trial and error. Deeper atomic-scale insight in the particle formation process would enable more rational syntheses. Here we exemplify this using a family of trimetallic PtNiCo nanooctahedra obtained via a low-temperature, surfactant-free solvothermal synthesis. We analyze the competition between Ni and Co precursors under coreduction “one-step” conditions when the Ni reduction rates prevailed. To tune the Co reduction rate and final content, we develop a “two-step” route and track the evolution of the composition and morphology of the particles at the atomic scale. To achieve this, scanning transmission electron microscopy and energy dispersive X-ray elemental mapping techniques are used. We provide evidence of a heterogeneous element distribution caused by element-specific anisotropic growth and create octahedral nanoparticles with tailored atomic composition like Pt1.5M, PtM, and PtM1.5 (M = Ni + Co). These trimetallic electrocatalysts have been tested toward the oxygen reduction reaction (ORR), showing a greatly enhanced mass activity related to commercial Pt/C and less activity loss than binary PtNi and PtCo after 4000 potential cycles.
Resumo:
The development and optimization of electrocatalysts for application in fuel cell systems have been the focus of a variety of studies where core–shell structures have been considered as a promising alternative among the materials studied. We synthesized core–shell nanoparticles of Sn x @Pt y and Rh x @Pt y (Sn@Pt, Sn@Pt2, Sn@Pt3, Rh@Pt, Rh@Pt2, and Rh@Pt3) through a reduction methodology using sodium borohydride. These nanoparticles were electrochemically characterized by cyclic voltammetry and further analyzed by cyclic voltammetry studying their catalytic activity toward glycerol electro-oxidation; chronoamperometry and potentiostatic polarization experiments were also carried out. The physical characterization was carried out by X-ray diffraction, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The onset potential for glycerol oxidation was shifted in 130 and 120 mV on the Sn@Pt3/C and Rh@Pt3/C catalysts, respectively, compared to commercial Pt/C, while the stationary pseudo-current density, taken at 600 mV, increased 2-fold and 5-fold for these catalysts related to Pt/C, respectively. Thus, the catalysts synthesized by the developed methodology have enhanced catalytic activity toward the electro-oxidation of glycerol, representing an interesting alternative for fuel cell systems.
Resumo:
Concrete substructures are often subjected to environmental deterioration, such as sulfate and acid attack, which leads to severe damage and causes structure degradation or even failure. In order to improve the durability of concrete, the High Performance Concrete (HPC) has become widely used by partially replacing cement with pozzolanic materials. However, HPC degradation mechanisms in sulfate and acidic environments are not completely understood. It is therefore important to evaluate the performance of the HPC in such conditions and predict concrete service life by establishing degradation models. This study began with a review of available environmental data in the State of Florida. A total of seven bridges have been inspected. Concrete cores were taken from these bridge piles and were subjected for microstructural analysis using Scanning Electron Microscope (SEM). Ettringite is found to be the products of sulfate attack in sulfate and acidic condition. In order to quantitatively analyze concrete deterioration level, an image processing program is designed using Matlab to obtain quantitative data. Crack percentage (Acrack/Asurface) is used to evaluate concrete deterioration. Thereafter, correlation analysis was performed to find the correlation between five related variables and concrete deterioration. Environmental sulfate concentration and bridge age were found to be positively correlated, while environmental pH level was found to be negatively correlated. Besides environmental conditions, concrete property factor was also included in the equation. It was derived from laboratory testing data. Experimental tests were carried out implementing accelerated expansion test under controlled environment. Specimens of eight different mix designs were prepared. The effect of pozzolanic replacement rate was taken into consideration in the empirical equation. And the empirical equation was validated with existing bridges. Results show that the proposed equations compared well with field test results with a maximum deviation of ± 20%. Two examples showing how to use the proposed equations are provided to guide the practical implementation. In conclusion, the proposed approach of relating microcracks to deterioration is a better method than existing diffusion and sorption models since sulfate attack cause cracking in concrete. Imaging technique provided in this study can also be used to quantitatively analyze concrete samples.
Resumo:
As nuclear energy systems become more advanced, the materials encompassing them need to perform at higher temperatures for longer periods of time. In this Master’s thesis we experiment with an oxide dispersion strengthened (ODS) austenitic steel that has been recently developed. ODS materials have a small concentration of nano oxide particles dispersed in their matrix, and typically have higher strength and better extreme temperature creep resistance characteristics than ordinary steels. However, no ODS materials have ever been installed in a commercial power reactor to date. Being a newer research material, there are many unanswered phenomena that need to be addressed regarding the performance under irradiation. Furthermore, due to the ODS material traditionally needing to follow a powder metallurgy fabrication route, there are many processing parameters that need to be optimized before achieving a nuclear grade material specification. In this Master’s thesis we explore the development of a novel ODS processing technology conducted in Beijing, China, to produce solutionized bulk ODS samples with ~97% theoretical density. This is done using relatively low temperatures and ultra high pressure (UHP) equipment, to compact the mechanically alloyed (MA) steel powder into bulk samples without any thermal phase change influence or oxide precipitation. By having solutionized bulk ODS samples, transmission electron microscopy (TEM) observation of nano oxide precipitation within the steel material can be studied by applying post heat treatments. These types of samples will be very useful to the science and engineering community, to answer questions regarding material powder compacting, oxide synthesis, and performance. Subsequent analysis performed at Queen’s University included X-ray diffraction (XRD) and inductively coupled plasma optical emission spectrometry (ICP-OES). Additional TEM in-situ 1MeV Kr2+ irradiation experiments coupled with energy dispersive X-ray (EDX) techniques, were also performed on large (200nm+) non-stoichiometric oxides embedded within the austenite steel grains, in an attempt to quantify the elemental compositional changes during high temperature (520oC) heavy ion irradiation.
Resumo:
The synthesis of size-monodispersed indium nanoparticles via an innovative simultaneous phase transfer and ripening method is reported. The formation of nanoparticles occurs in a one-step process instead of well-known two-step phase transfer approaches. The synthesis involves the reduction of InCl3 with LiBH4 at ambient temperature and although the reduction occurs at room temperature, fine indium nanoparticles, with a mean diameter of 6.4 ± 0.4 nm, were obtained directly in non-polar n-dodecane. The direct synthesis of indium nanoparticles in n-dodecane facilitates their fast formation and enhances their size-monodispersity. In addition, the nanoparticles were highly stable for more than 2 months. The nanoparticles were characterised by dynamic light scattering (DLS), small angle X-ray scattering (SAXS), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared (FT-IR) spectroscopy to determine their morphology, structure and phase purity.
Resumo:
Este trabalho de investigação centra-se no contributo dos exames de superfície e nas análises micro-analíticas no estudo de vinte e uma pinturas atribuídas à oficina de Frei Carlos, um dos grandes Mestres Luso-Flamengos ativos em território Nacional durante a primeira metade do século XVI. A "Pintura Luso-Flamenga" é uma expressão comummente usada na história da pintura Portuguesa do primeiro terço do século XVI e no seu sentido mais básico designa o trabalho de mestres flamengos que se instalaram em Portugal durante o reinado de D. Manuel I (1495- 1521) contribuindo decisivamente para o processo de renovação da pintura Portuguesa na época. O estudo integrado combina a pesquisa histórica em fontes documentais com exames de superfície e de caracterização material das obras de arte. O estudo material das pinturas foi realizado através de microscopia ótica, microscopia de infravermelhos com transformada de Fourier, espectroscopia de micro-Raman, microscopia eletrónica de varrimento acoplada com espectrometria de energia dispersiva de raios X, micro- difração de raios-X, cromatografia líquida de alta eficiência e pirólise acoplada à cromatografia gasosa /espectrometria de massa. Esta investigação envolveu técnicas complementares de análise de superfície e de ponto no estudo técnico e material das preparações, imprimitura, desenho subjacente, camadas pictóricas e sucessões estratigráficas, dando a conhecer os materiais utilizados na execução técnica das pinturas e evidenciando especificidades técnicas da produção artística. Este estudo pretende inclusivamente evidenciar alguns detalhes técnicos do artista que possivelmente estão relacionados com a herança das práticas Flamengas. O conhecimento de algumas particularidades da técnica deste Mestre também permitiu estabelecer comparações com duas pinturas que haviam sido atribuídas, com algumas reservas, a esta oficina de pintura Luso-Flamenga. Mais recentemente, como resultado de um estudo colaborativo, foi realizada uma ampla campanha de reflectografia infravermelhos, introduzindo novos dados acerca da execução técnica do desenho subjacente, o que contribuiu para diferenciar, nestas duas pinturas, outra "mão", atribuída então a um seguidor de Frei Carlos. Esta investigação introduz um novo e profundo conhecimento sobre a Oficina de Frei Carlos, permitindo estabelecer comparações com a obra do seu seguidor e com uma pintura também atribuída a esta oficina e que incorpora o Museu da National Gallery (NG5594), evidenciando os materiais utilizados na técnica de produção artística e especificidades técnicas aliadas aos processos criativos/ construtivos que permitem estabelecer os pontos de contacto e de diferenciação entre estas obras; Varieties and styles in the works attributed to Frei Carlos - new perspectives Abstract: This investigation is focused on the contributions of surface exams and micro-analytical research in the study of twenty one paintings attributed to Frei Carlos workshop, one of the most important Portuguese-Flemish painters active in our country during the first half of sixteen Century. "Portuguese-Flemish Painting" is a common expression used in the history of Portuguese painting of the first third of the sixteenth century and in its most basic meaning designates the work of Flemish masters who settled in Portugal during the reign of King Manuel I (1495-1521) contributing decisively to the process of renewal of Portuguese painting at the time. The integrated approach combines historical research on documental sources with surface examination and material characterization of the paintings by using state-of-art analytical techniques. Microanalysis was carried out by optical microscopy, micro-Fourier-transform infrared-spectroscopy, micro-Raman spectroscopy, scanning electron microscopy coupled with energy dispersive X-ray spectrometry, micro-X-ray diffraction analysis, high performance liquid chromatography and Pyrolysis gas chromatography mass spectrometry. This complementary surface and analytical research was involved in the technical and material characterization of grounds, underdrawings, primings, paint layers and its multi-layered build-up, providing access to the painter´s materials used in the technical execution of the paintings and details of the technique of artistic production. This study also intends to expose some usual details of the artist’s technique which are possibly related to the Master´s Flemish influence. The knowledge of some particularities of the Master´s technique also allowed a new comparison with two paintings that had been attributed with some reserves to this Portuguese-Flemish workshop. More recently, as a result of a collaborative study, an extensive infrared reflectography campaign was made, giving new data concerning underdrawings technical execution and contributing to differentiate, in these two paintings, another “hand”, attributed to a follower of Frei Carlos. Complementary analytical research also added a new and deep insight into Frei Carlos workshop, his follower and a panel that still attributed to Frei Carlos workshop that integrates the National Gallery´s Museum (NG5594), evidencing the materials used in technical production, their models and sources of artistic inspiration, techniques and pictorial construction procedures that could specifically relate or distinguish between them.
Resumo:
This paper presents the results of a multidisciplinary and multi-analytical study of the amber beads, red pigments, lithic arrowheads and selected ceramics from the Museum of Évora’s collection of the Zambujeiro Dolmen. Amber beads were studied by Attenuated Total Reflectance Fourier Transformed Infrared Spectroscopy (ATR-FTIR) and Pyrolysis coupled to Gas Chromatography and Mass Spectrometry (Py-GC/MS) to confirm their chemical nature and provenance. The red pigments, frequently found in funerary Neolithic context of the Iberian Peninsula, were studied with micro-Raman, and Scanning Electron Microscopy coupled to Energy Dispersive X-Ray Spectroscopy (SEM-EDS) to identify their chemical nature and provenance. The lithic arrowheads were analysed by portable X-Ray Fluorescence (p-XRF), micro X-Ray Diffraction (XRD), SEM-EDS, and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). The ceramic materials were studied to infer provenance and production technology by p-XRF, XRD and SEM-EDS; ceramic contents were evaluated by GC/MS. The studies have shown that while some materials travel hundreds or thousands of kilometres to arrive to the Zambujeiro Dolmen, local materials were also used in the items selected by the communities to honour their deceased.
Resumo:
This article reports the preliminary results of a technical and material study carried out on a 17th century panel painting located at the Chapel of the Souls in the main church of Vila Nova da Baronia (30 km away from Evora city, in southern Portugal). This painting is attributed to Jose the Escovar, a painter that worked for Evora Archiepiscopate between 1583 and 1622. Jose the Escovar is known by his mural paintings all across the Alentejo region. This is the first time that a panel painting made by this artist was studied. Analytical methods used included in situ technical photography (visible (Vis), raking light (RAK), infrared (IR), and ultraviolet (UV)), optical microscopy of cross sections, scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDS), micro Raman spectroscopy, and micro Fourier transform infrared spectroscopy (m-FT-IR). The goal was to ascertain the techniques and colored materials used by Escovar on this painting so that the data can be used in future comparisons with others works attributed to this painter based on stylistic aspects.
Resumo:
Grego´rio Lopes (c. 1490–1550) was one of the most prominent painters of the renaissance and Mannerism in Portugal. The painting “Mater Misericordiae” made for the Sesimbra Holy House of Mercy, circa 1535–1538, is one of the most significant works of the artist, and his only painting on this theme, being also one of the most significant Portuguese paintings of sixteenth century. The recent restoration provided the possibility to study materially the painting for the first time, with a multianalytical methodology incorporating portable energy-dispersive X-ray fluorescence spectroscopy, scanning electron microscopy–energy-dispersive spectroscopy, micro-X-ray diffraction, micro-Raman spectroscopy and high-performance liquid chromatography coupled to diode array and mass spectrometry detectors. The analytical study was complemented by infrared reflectography, allowing the study of the underdrawing technique and also by dendrochronology to confirm the date of the wooden panels (1535–1538). The results of this study were compared with previous ones on the painter’s workshop, and significant differences and similitudes were found in the materials and techniques used
Resumo:
The visible polychromy of a wooden sculpture representing St. John the Evangelist, from Museu Nacional de Arte Antiga, Lisbon (Portugal) presents several techniques that complement each other on the creation of a sumptuous estofado. This case-study allowed the survey on gilding, silvering and polychromy practices, and observations on their execution are briefly reported and documented with results from a multi-analytical approach. Examination included digital photomicrography and the observation of micro-samples cross-sections, while material identification resorted to several analytical methods that included scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDS) and X-ray diffraction (XRD).
Resumo:
This paper focusses on the study of the underdrawings of 16th century easel paintings attributed to the workshop of the Portuguese-Flemish Master Frei Carlos. This investigation encompasses multidisciplinary research that relates the results of surface exams (infrared reflectography, standard light photography and infrared photography) with analytical investigations. The surface analysis of Frei Carlos’ underdrawings by infrared reflectography has shown heterogeneous work, revealing two different situations: (1) an abundant and expressive underdrawing, revealing a Flemish influence and (2) a simple and outlined underdrawing. This preliminary research raised an important question related to this Portuguese-Flemish workshop and to the analytical approach: Is the underdrawing's heterogeneity, as observed in the reflectograms, related to different artists or is this rather an effect that is produced due to the use of different materials in the underdrawing's execution? Consequently, if different materials were used, how can we have access to the hidden underdrawings? In order to understand the reasons for this dissemblance, chemical analysis of micro-samples collected in underdrawing areas and representing both situations were carried out by optical microscopy, micro Fourier transform infrared spectroscopy (μ-FTIR), scanning electron microscopy coupled with energy dispersive X-ray spectrometry (SEM-EDX) and micro-Raman spectroscopy (μ-Raman). Taking into account the different possibilities and practical and theoretical limitations of surface and punctual examinations in the study of easel painting underdrawings, the methodology of research was adjusted, sometimes resulting in a re-analysis of experimental results. This research shows the importance of combining multispectral surface exams and chemical analysis in the understanding of the artistic creative processes of 16th century easel paintings.
Resumo:
Muitas plantas possuem potencial genético para a remoção de metais tóxicos, o que permite que elas sejam empregadas na remediação de áreas contaminadas, por serem uma alternativa econômica e ecologicamente viável. O gênero Eriocaulon é composto 476 espécies de plantas aquáticas com distribuição especialmente pantropical, dentre elas E. setaceum é umaespécie com ampla distribuição geográfica, ocorrendo tanto nos paleotrópicos (Ásia e África) como nos neotrópicos da América Central até o sudeste do Brasil. O objetivo deste trabalho foi realizar uma análise semiquantitativa de metais pesados em inflorescências de E. setaceum com o intuito de verificar a presença e a influência desses metais sobre a morfologia da espécie, visando contribuir para os estudos sobre o manejo e a recuperação de áreas degradadas. As amostras de Eriocaulon setaceum,provenientes da Ilha do Marajó, foram encaminhadas para EDS (Energy Dispersive X-ray Detector) obtendo-se dados percentuais de metais pesados. Os metais apareceram distribuídos em várias regiões da inflorescênciadas plantas e em diferentes concentrações. Apesar dos altos valores encontrados, principalmente para mercúrio, a planta não apresentou sinais de intoxicação ou aparente modificação em tecidos da inflorescência, mostrando o seu potencial bioacumulador e potencial para ser utilizada na fitorremediação de áreas contaminadas.
Resumo:
Background: the failure of osseointegration in oral rehabilitation has gained importance in current literature and in clinical practice. The integration of titanium dental implants in alveolar bone has been partly ascribed to the biocompatibility of the implant surface oxide layer. The aim of this investigation was to analyze the surface topography and composition of failed titanium dental implants in order to determine possible causes of failure.Methods: Twenty-one commercially pure titanium (cpTi) implants were retrieved from 16 patients (mean age of 50.33 +/- 11.81 years). Fourteen implants were retrieved before loading (early failures), six after loading (late failures), and one because of mandibular canal damage. The failure criterion was lack of osseointegration characterized as dental implant mobility. Two unused implants were used as a control group. All implant surfaces were examined by scanning electron microscopy (SEM) and energy-dispersive spectrometer x-ray (EDS) to element analysis. Evaluations were performed on several locations of the same implant.Results: SEM showed that the surface of all retrieved implants consisted of different degrees of organic residues, appearing mainly as dark stains. The surface topography presented as grooves and ridges along the machined surface similar to control group. Overall, foreign elements such as carbon, oxygen, sodium, calcium, silicon, and aluminum were detected in failed implants. The implants from control group presented no macroscopic contamination and clear signs of titanium.Conclusion: These preliminary results do not suggest any material-related cause for implant failures, although different element composition was assessed between failed implants and control implants.