970 resultados para Enamel Erosion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to evaluate the color, translucency and fluorescence of bovine enamel and dentin submitted to different bleaching modalities. Pairs of enamel and dentin discs (3 mm in diameter) were obtained from 150 bovine teeth. In 75 of the pairs, one specimen had the enamel removed (Dentin Group). The dentin was removed from one specimen of the remaining 75 pairs (Enamel Group) and the other specimen was left unaltered (Enamel + Dentin). The evaluation of color, translucency and fluorescence was performed with a spectrophotometer using the CIE L* a* b*. Each group was subdivided into three subgroups: Control, composed of specimens that were not bleached, and two experimental subgroups, bleached with either 10% carbamide peroxide (CP10%) or 35% hydrogen peroxide (HP35%). The CP10% bleaching gel was applied 2 h/day for 14 days. The HP35% bleaching agent was applied using two applications of 30 min each, with a one week interval between each application. When not being bleached, the specimens were immersed in artificial saliva. The color, translucency and fluorescence ratings were assessed using spectrophotometry 7 days after the treatment. Regarding color, significant differences were found between bleaching techniques in the groups Enamel and Enamel + Dentin, with a higher color difference for HP35%. Bleaching did not change the translucency of the dental tissues. There were significant differences for fluorescence for the HP35% subgroups of Dentin and Enamel + Dentin, and for the CP10% subgroup of Enamel. Dental bleaching changed the color and fluorescence of the dental tissues, however translucency was not affected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the in vitro enamel remineralization capacity of experimental composite resins containing sodium trimetaphosphate (TMP) combined or not with fluoride (F). Bovine enamel slabs were selected upon analysis of initial surface hardness (SH1) and after induction of artificial carious lesions (SH2). Experimental resins were as follows: resin C (control-no sodium fluoride (NaF) or TMP), resin F (with 1.6 % NaF), resin TMP (with 14.1 % TMP), and resin TMP/F (with NaF and TMP). Resin samples were made and attached to enamel slabs (n = 12 slabs per material). Those specimens (resin/enamel slab) were subjected to pH cycling to promote remineralization, and then final surface hardness (SH3) was measured to calculate the percentage of surface hardness recovery (%SH). The integrated recovery of subsurface hardness (ΔKHN) and F concentration in enamel were also determined. Data was analyzed by ANOVA and Student-Newman-Keuls test (p < 0.05). Resins F and TMP/F showed similar SH3 values (p = 0.478) and %SH (p = 0.336) and differed significantly from the other resins (p < 0.001). Considering ΔKHN values, resin TMP/F presented the lowest area of lesion (p < 0.001). The presence of F on enamel was different among the fluoridated resins (p = 0.042), but higher than in the other resins (p < 0.001). The addition of TMP to a fluoridated composite resin enhanced its capacity for remineralization of enamel in vitro. The combination of two agents with action on enamel favored remineralization, suggesting that composite resins containing sodium trimetaphosphate and fluoride could be indicated for clinical procedures in situations with higher cariogenic challenges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the ability of conventional toothpastes (1100 ppm F) supplemented with sodium trimetaphosphate (TMP) in demineralization. Blocks of enamel were selected and then divided into seven experimental groups of 12: toothpaste without F and TMP (placebo), toothpaste with 1100 ppm F (1100), and toothpaste with 1100 ppm F supplemented with TMP-1 % (1100 1 % TMP), 3 % (1100 3 % TMP), 4.5 % (1100 4.5 % TMP), 6 % (1100 6 % TMP), and 9 % (1100 9 % TMP). Blocks were subjected to five pH cycles (demineralizing/remineralizing solutions) at 37 °C and treated with toothpaste slurries twice daily, after which the blocks were maintained for 2 days in fresh remineralizing solution. Following treatments, surface hardness (SHf) and cross-sectional hardness were determined for calculating the integrated loss of subsurface hardness (ΔKHN). The fluoride present in the enamel was also measured. The SHf and ΔKHN measurements showed that supplementation with 3 % TMP was the most effective (p < 0.001) and showed greater concentration of F in the enamel (p < 0.001). Addition of 3 % TMP to a conventional toothpaste (1100 ppm F) showed greater efficacy in reducing enamel demineralization. Fluoride toothpastes containing trimetaphosphate possess good anticaries potential required to reduce the prevalence of dental caries in high-risk patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate the effect of a fluoride dentifrice containing sodium hexametaphosphate (HMP) on enamel demineralization in situ. This double-blind and cross-over study consisted of 3 phases (7 days each) in which 12 volunteers wore intraoral appliances containing four enamel bovine blocks. Specimens were treated (3×/day) with placebo (no F or HMP), 1100ppm F (1100F) and 1100F plus HMP1% (1100F-HMP1%) toothpastes, and the cariogenic challenge was performed using a 30% sucrose solution (6×/day). Final surface hardness, the percentage of surface hardness loss (%SH), the integrated loss of subsurface hardness (ΔKHN), as well as enamel calcium (Ca), phosphorus (P) and firmly-bound fluoride (F) were determined. Also, biofilm formed on the blocks were analyzed for F, Ca, P and insoluble extracellular polysaccharide (EPS) concentrations. Data were submitted 1-way ANOVA, followed by Student-Newman-Keuls' test (p<0.05). 1100F-HMP1% promoted the lowest %SH and ΔKHN among all groups (p<0.001). The addition of HMP1% to 1100F did not enhance enamel F uptake, but significantly increased enamel Ca concentrations (p<0.001). Similar EPS concentrations were seen for 1100F-HMP1% and 1100F groups (p>0.05). All the groups were supersaturated with respect to HA. However, only 1100F-HMP1% group was supersaturated with respect to CaF2 (p<0.05). The ionic activities of F(-), CaF(+) and HF(0) for the 1100F-HMP1% group were the highest among all groups (p<0.001). The addition of HMP1% to a conventional toothpaste significantly reduces enamel demineralization in situ when compared to 1100F. This dentifrice could be a viable alternative to patients at high risk of caries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of amoxicillin during early childhood has been associated with molar incisor hypomineralization. The objective of this study was to determine whether the use of amoxicillin interferes with enamel development, during secretion and early mineralization stages. Fifteen pregnant rats were randomly assigned to three groups that received physiological solution (sham group), 100 mg/kg/day amoxicillin (A100G), and 500 mg/kg/day amoxicillin (A500G). After birth, the pups in each group received the same treatment until post-natal day 7 or 12. The upper first molars were analyzed histomorphometrical and immunostaining with amelogenin on day 7, and MMP-20 on day 12 was performed using a semiquantitative method (H-score). At 7 days, several vacuolar structures were observed in the ameloblasts in the A100G and A500G groups. A significant reduction of the enamel thickness (P < 0.001) was found in amoxicillin-treated rats compared with the sham group. Significant differences were not observed in enamel thickness (P > 0.05) between the groups of 12-day-old rats. Moreover, significant differences were not observed in the number of amelogenin- and MMP-20-immunolabeled ameloblasts (P > 0.05) between groups. The present results suggest that amoxicillin interferes with the initial stages of amelogenesis by causing structural changes in the ameloblasts and a reduction of the enamel matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The objective of this study was to evaluate the effect of Er: YAG laser on the formation of CaF2, after the application of acidulated phosphate fluoride (APF), and its influence on the anti-cariogenic action in human dental enamel. Background Data: Er:YAG laser was designed to promote ablation of the enamel. However, the possibility of using this energy to increase the enamel's resistance to caries has hardly been explored, and neither has its interaction with the use of fluorides. Materials and Methods: One hundred and twenty blocks of enamel were allocated to four groups of 30 blocks each: (1) C, control group; (2) Er:YAG, laser; (3) APF; and (4) Er:YAG+APF. Of these, 80 blocks were submitted to pH cycling for 14 days. In the other 40 blocks, fluoride (CaF2) was measured before cycling. After pH cycling, surface microhardness (SMH), microhardness in cross-section (converted to mineral contents % vol. min.), and fluoride after cycling (40 blocks) were also determined. Results: SMH decreased in all groups. The control group showed the highest decrease, and Er:YAG+APF showed the lowest decrease (p < 0.05). Groups APF and Er:YAG showed the same results (p > 0.05). Mineral content at depths 10, 20, and 40 μm was lower in the control and Er:YAG groups, and higher in groups APF and Er:YAG+APF. CaF2 (μgF/cm2) deposited before pH cycling was higher in the APF group when compared to the Er:YAG+APF group. Control and Er:YAG groups showed the lowest values (p > 0.05). Conclusion: It was concluded that Er:YAG laser influenced the deposition of CaF2 on the enamel and showed a superficial anti-cariogenic action, but not in depth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Cornélia of Lange´s syndrome is a genetic anomaly, described and published by Cornelia Catharina of Lange in 1933, however, their aspects were described previously by Winfried Robert Clemens Brechmann in 1916, that’s why it is also known as Brachmann of Lange’s syndrome. The most frequent clinical characteristics include typical face dismorfia, variable degree of mental delay, anomalies of the hands and feet, multiple malformations, retardation of the pre and postnatal physical development and microcephaly variable intellectual compromising. Some facial characteristics are peculiar and they are mixed with the inherited lines of their own family, the united brows, the long lashes, the small nose, the round face, the fine lips and lightly inverted. As oral manifestations they present micrognathia, dental crowding, periodontal disease, delayed dental eruption, enamel hypoplasia, erosion of the enamel and dentine caused by stomach acids of the gastroesophageal reflux and atresia of the dental arches. The purpose of this paper is to present a clinical report of a boy bearer of this syndrome assisted at CAOE - FOA - UNESP, emphasizing the importance of multiprofessional team for the diagnosis and treatment of this syndrome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enamel microabrasion can eliminate enamel irregularities and discoloration defects, improving the appearance of teeth. This article presents the latest treatment protocol of enamel microabrasion to remove stains on the enamel surface. It has been verified that teeth submitted to microabrasion acquire a yellowish color because of the thinness of the remaining enamel, revealing the color of dentinal tissue to a greater degree. In these clinical conditions, correction of the color pattern of these teeth can be obtained with a considerable margin of clinical success using products containing carbamide peroxide in custom trays. Thus, patients can benefit from combined enamel microabrasion/tooth bleaching therapy, which yields attractive cosmetic results. Esthetics plays an important role in contemporary dentistry, especially because the media emphasizes beauty and health. Currently, in many countries, a smile is considered beautiful if it imitates a natural appearance, with clear, well-aligned teeth and defined anatomical shapes.1-3 Enamel microabrasion is one technique that can be used to correct discolored enamel. This technique has been elucidated and strongly advocated by Croll and Cavanaugh since 1986,4 and by other investigators1,2,5-13 who suggested mechanical removal of enamel stains using acidic substances in conjunction with abrasive agents. Enamel microabrasion is indicated to remove intrinsic stains of any color and of hard texture, and is contraindicated for extrinsic stains, dentinal stains, for patients with deficient labial seals, and in cases where there is no possibility to place a rubber dam adequately during the microabrasion procedure.1,2 It should be emphasized that enamel microabrasion causes a microreduction on the enamel surface,3,6,10 and, in some cases, teeth submitted to microabrasion may appear a darker or yellowish color because the thin remaining enamel surface can reveal some of the dentinal tissue color. In these situations, according to Haywood and Heymann in 1989,14 correction of the color pattern of teeth can be obtained through the use of whitening products containing carbamide peroxide in custom trays. A considerable margin of clinical success has been shown when diligence to at-home protocols is achieved by the patient and supervised by the professional.3 Considering these possibilities, this article presents the microabrasion technique for removal of stains on dental enamel, followed by tooth bleaching with carbamide peroxide and composite resin restoration, if required. - See more at: https://www.dentalaegis.com/cced/2011/04/smile-restoration-through-use-of-enamel-microbrasion-associated-with-tooth-bleaching#sthash.N6jz2Bwk.dpuf

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superficial stains and irregularities of the enamel are generally what prompt patients to seek dental intervention to improve their smile. These stains or defects may be due to hypoplasia, amelogenesis imperfecta, mineralized white spots, or fluorosis, for which enamel microabrasion is primarily indicated. Enamel microabrasion involves the use of acidic and abrasive agents, such as with 37% phosphoric acid and pumice or 6% hydrochloric acid and silica, applied to the altered enamel surface with mechanical pressure from a rubber cup coupled to a rotatory mandrel of a low-rotation micromotor. If necessary, this treatment can be safely combined with bleaching for better esthetic results. Recent studies show that microabrasion is a conservative treatment when the enamel wear is minimal and clinically imperceptible. The most important factor contributing to the success of enamel microabrasion is the depth of the defect, as deeper, opaque stains, such as those resulting from hypoplasia, cannot be resolved with microabrasion, and require a restorative approach. Surface enamel alterations that result from microabrasion, such as roughness and microhardness, are easily restored by saliva. Clinical studies support the efficacy and longevity of this safe and minimally invasive treatment. The present article presents the clinical and scientific aspects concerning the microabrasion technique, and discusses the indications for and effects of the treatment, including recent works describing microscopic and clinical evaluations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enamel microabrasion can eliminate enamel irregularities and discoloration defects, improving the appearance of teeth. This article presents the latest treatment protocol of enamel microabrasion to remove stains on the enamel surface. It has been verified that teeth submitted to microabrasion acquire a yellowish color because of the thinness of the remaining enamel, revealing the color of dentinal tissue to a greater degree. In these clinical conditions, correction of the color pattern of these teeth can be obtained with a considerable margin of clinical success using products containing carbamide peroxide in custom trays. Thus, patients can benefit from combined enamel microabrasion/tooth bleaching therapy, which yields attractive cosmetic results. Esthetics plays an important role in contemporary dentistry, especially because the media emphasizes beauty and health. Currently, in many countries, a smile is considered beautiful if it imitates a natural appearance, with clear, well-aligned teeth and defined anatomical shapes.1-3 Enamel microabrasion is one technique that can be used to correct discolored enamel. This technique has been elucidated and strongly advocated by Croll and Cavanaugh since 1986,4 and by other investigators1,2,5-13 who suggested mechanical removal of enamel stains using acidic substances in conjunction with abrasive agents. Enamel microabrasion is indicated to remove intrinsic stains of any color and of hard texture, and is contraindicated for extrinsic stains, dentinal stains, for patients with deficient labial seals, and in cases where there is no possibility to place a rubber dam adequately during the microabrasion procedure.1,2 It should be emphasized that enamel microabrasion causes a microreduction on the enamel surface,3,6,10 and, in some cases, teeth submitted to microabrasion may appear a darker or yellowish color because the thin remaining enamel surface can reveal some of the dentinal tissue color. In these situations, according to Haywood and Heymann in 1989,14 correction of the color pattern of teeth can be obtained through the use of whitening products containing carbamide peroxide in custom trays. A considerable margin of clinical success has been shown when diligence to at-home protocols is achieved by the patient and supervised by the professional.3 Considering these possibilities, this article presents the microabrasion technique for removal of stains on dental enamel, followed by tooth bleaching with carbamide peroxide and composite resin restoration, if required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New pit-and-fissure sealants with the capacity to release calcium and phosphate because of the presence of ACP have been introduced into the dental marketplace. With the continuous introduction of new dental materials, it is important not only to research and confirm their properties, but also to propose modifications or associations that may contribute to their improvement.