955 resultados para Electric wiring
Resumo:
For magnetically confined plasmas in tokamaks, we have numerically investigated how Lagrangian chaos at the plasma edge affects the plasma confinement. Initially, we have considered the chaotic motion of particles in an equilibrium electric field with a monotonic radial profile perturbed by drift waves. We have showed that an effective transport barrier may be created at the plasma edge by modifying the electric field radial profile. In the second place, we have obtained escape patterns and magnetic footprints of chaotic magnetic field lines in the region near a tokamak wall with resonant modes due to the action of an ergodic magnetic limiter. For monotonic plasma current density profiles we have obtained distributions of field line connections to the wall and line escape channels with the same spatial pattern as the magnetic footprints on the tokamak walls. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Purpose: The interference of electric fields (EF) with biological processes is an issue of considerable interest. No studies have as yet been reported on the combined effect of EF plus ionising radiation. Here we report studies on this combined effect using the prokaryote Microcystis panniformis, the eukaryote Candida albicans and human cells. Materials and methods: Cultures of Microcystis panniformis (Cyanobacteria) in glass tubes were irradiated with doses in the interval 0.5-5kGy, using a 60Co gamma source facility. Samples irradiated with 3kGy were exposed for 2h to a 20Vcm-1 static electric field and viable cells were enumerated. Cultures of Candida albicans were incubated at 36C for 20h, gamma-irradiated with doses from 1-4kGy, and submitted to an electric field of 180Vcm-1. Samples were examined under a fluorescence microscope and the number of unviable (red) and viable (apple green fluorescence) cells was determined. For crossing-check purposes, MRC5 strain of lung cells were irradiated with 2 Gy, exposed to an electric field of 1250 V/cm, incubated overnight with the anti-body anti-phospho-histone H2AX and examined under a fluorescence microscope to quantify nuclei with -H2AX foci. Results: In cells exposed to EF, death increased substantially compared to irradiation alone. In C. albicans we observed suppression of the DNA repair shoulder. The effect of EF in growth of M. panniformis was substantial; the number of surviving cells on day-2 after irradiation was 12 times greater than when an EF was applied. By the action of a static electric field on the irradiated MRC5 cells the number of nuclei with -H2AX foci increased 40%, approximately. Conclusions: Application of an EF following irradiation greatly increases cell death. The observation that the DNA repair shoulder in the survival curve of C. albicans is suppressed when cells are exposed to irradiation+EF suggests that EF likely inactivate cellular recovering processes. The result for the number of nuclei with -H2AX foci in MRC5 cells indicates that an EF interferes mostly in the DNA repair mechanisms. A molecular ad-hoc model is proposed.
Resumo:
The quadrupolar hyperfine interactions of in-diffused (111)In -> (111)Cd probes in polycrystalline isostructural Zr(4)Al(3) and Hf(4)Al(3) samples containing small admixtures of the phases (Zr/Hf)(3)Al(2) were investigated. A strong preference of (111)In solutes for the contaminant (Zr/Hf)(3)Al(2) minority phases was observed. Detailed calculations of the electric field gradient (EFG) at the Cd nucleus using the full-potential augmented plane wave + local orbital formalism allowed us to assign the observed EFG fractions to the various lattice sites in the (Zr/Hf)(3)Al(2) compounds and to understand the preferential site occupation of the minority phases by the (111)In atoms. The effects of the size of the supercell and relaxation around the oversized In and Cd probe atoms were investigated in detail.
Resumo:
Recently the paper ""Schwinger mechanism for gluon pair production in the presence of arbitrary time dependent chromo-electric field"" by G. C. Nayak was published [Eur. Phys. J. C 59: 715, 2009; arXiv:0708.2430]. Its aim is to obtain an exact expression for the probability of non-perturbative gluon pair production per unit time per unit volume and per unit transverse momentum in an arbitrary time-dependent chromo-electric background field. We believe that the obtained expression is open to question. We demonstrate its inconsistency on some well-known examples. We think that this is a consequence of using the socalled ""shift theorem""[arXiv:hep-th/0609192] in deriving the expression for the probability. We make some critical comments on the theorem and its applicability to the problem in question.
Resumo:
We report the partitioning of the interaction-induced static electronic dipole (hyper)polarizabilities for linear hydrogen cyanide complexes into contributions arising from various interaction energy terms. We analyzed the nonadditivities of the studied properties and used these data to predict the electric properties of an infinite chain. The interaction-induced static electric dipole properties and their nonadditivities were analyzed using an approach based on numerical differentiation of the interaction energy components estimated in an external electric field. These were obtained using the hybrid variational-perturbational interaction energy decomposition scheme, augmented with coupled-cluster calculations, with singles, doubles, and noniterative triples. Our results indicate that the interaction-induced dipole moments and polarizabilities are primarily electrostatic in nature; however, the composition of the interaction hyperpolarizabilities is much more complex. The overlap effects substantially quench the contributions due to electrostatic interactions, and therefore, the major components are due to the induction and exchange induction terms, as well as the intramolecular electron-correlation corrections. A particularly intriguing observation is that the interaction first hyperpolarizability in the studied systems not only is much larger than the corresponding sum of monomer properties, but also has the opposite sign. We show that this effect can be viewed as a direct consequence of hydrogen-bonding interactions that lead to a decrease of the hyperpolarizability of the proton acceptor and an increase of the hyperpolarizability of the proton donor. In the case of the first hyperpolarizability, we also observed the largest nonadditivity of interaction properties (nearly 17%) which further enhances the effects of pairwise interactions.
Resumo:
Electron transport parameters are important in several areas ranging from particle detectors to plasma-assisted processing reactors. Nevertheless, especially at high fields strengths and for complex gases, relatively few data are published. A dedicated setup has been developed to measure the electron drift velocity and the first Townsend coefficient in parallel plate geometry. An RPC-like cell has been adopted to reach high field strengths without the risk of destructive sparks. The validation data obtained with pure Nitrogen will be presented and compared to a selection of the available literature and to calculations performed with Magboltz 2 version 8.6. The new data collected in pure Isobutane will then be discussed. This is the first time the electron drift velocity in pure Isobutane is measured well into the saturation region. Good agreement is found with expectations from Magboltz. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
While evidence of ion reduction at the cathode has been given, proof of anode activity, in order to account completely for the redox-type electrochemical mechanism so far postulated to originate the electric field-induced non-spontaneous crystallization observed in glasses, is still lacking. This study demonstrates that direct contact of both cathode and anode electrodes with the material is mandatory to promote crystal nucleation. The electrochemical process of concern is established here to involve a solid-state process, electrolytic in nature. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The potential profile for a model of squid axon membrane has been determined for two physiological states: resting and action states. The non-linear Poisson-Boltzmann equation has been solved by considering the volumetric charge densities due to charges dissolved in an electrolytic solution and fixed on both glycocalyx and cytoplasmatic proteins. Results showing the features of the potential profile along the outer electrolytic region are similar for both resting and action states. However, the potential fall along glycocalyx at action state is lower than at resting. A small variation in the Na+ concentration drastically affects the surface membrane potentials and vice versa. We conclude that effects on the potential profile due to surface lipidic bilayer charge and contiguous electric double layers are more relevant than those provoked by fixed charges distributed along the cell cytoplasm. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
In magnetic resonance imaging (MRI), either on human or animal studies, the main requirements for radiofrequency (RF) coils are to produce a homogeneous RF field while used as a transmitter coil and to have the best signal-to-noise ratio (SNR) while used as a receiver. Besides, they need to be easily frequency adjustable and have input impedance matching 50 Omega to several different load conditions. New theoretical and practical concepts are presented here for considerable enhancing of RF coil homogeneity for MRI experiments on small animals. To optimize field homogeneity, we have performed simulations using Blot and Savart law varying the coil`s window angle, achieving the optimum one. However, when the coil`s dimensions are the same order of the wave length and according to transmission line theory, differences in electrical length and effects of mutual inductances between adjacent strip conductors decrease both field homogeneity and SNR. The problematic interactions between strip conductors by means of mutual inductance were eliminated by inserting crossings at half electrical length, avoiding distortion on current density, thus eliminating sources of field inhomogeneity. Experimental results show that measured field maps and simulations are in good agreement. The new coil design, dubbed double-crossed saddle described here have field homogeneity and SNR superior than the linearly driven 8-rung birdcage coil. One of our major findings was that the effects of mutual inductance are more significant than differences in electrical length for this frequency and coil dimensions. In vitro images of a primate Cebus paela brain were acquired, confirming double-crossed saddle superiority. (C) 2010 Wiley Periodicals, Inc. Concepts Magn Reson Part B (Magn Reson Engineering) 37B: 193-201, 2010
Resumo:
In this work we applied a quantum circuit treatment to describe the nuclear spin relaxation. From the Redfield theory, we obtain a description of the quadrupolar relaxation as a computational process in a spin 3/2 system, through a model in which the environment is comprised by five qubits and three different quantum noise channels. The interaction between the environment and the spin 3/2 nuclei is described by a quantum circuit fully compatible with the Redfield theory of relaxation. Theoretical predictions are compared to experimental data, a short review of quantum channels and relaxation in NMR qubits is also present.
Resumo:
The behaviour of interacting ultracold Rydberg atoms in both constant electric fields and laser fields is important for designing experiments and constructing realistic models of them. In this paper, we briefly review our prior work and present new results on how electric fields affect interacting ultracold Rydberg atoms. Specifically, we address the topics of constant background electric fields on Rydberg atom pair excitation and laser-induced Stark shifts on pair excitation.
Resumo:
The electrical wiring shop at the New York Trade School is shown with students working. In the background, the planning area with draft tables can also be seen. Black and white photograph.
Resumo:
We generalize the standard linear-response (Kubo) theory to obtain the conductivity of a system that is subject to a quantum measurement of the current. Our approach can be used to specifically elucidate how back-action inherent to quantum measurements affects electronic transport. To illustrate the utility of our general formalism, we calculate the frequency-dependent conductivity of graphene and discuss the effect of measurement-induced decoherence on its value in the dc limit. We are able to resolve an ambiguity related to the parametric dependence of the minimal conductivity.
Resumo:
http://digitalcommons.colby.edu/atlasofmaine2008/1010/thumbnail.jpg
Resumo:
Ed Tilin a graduate of the New York Trade School's Advanced Television program is pictured here as part of the General Electric Company. Original caption reads, "Ed Tilin - Advanced Television 1954, joined G.E. in 1956 and has risen rapidly. He now supervises all television product service, product training and consumer relations activities for the New York district. He is a member of the exemtive [sic] board of CETA (Certified Electronic Technicians Association). Black and white photograph with original caption glued to reverse.