954 resultados para Electric Propulsion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A quasisteady model for the plasma ablated from a thick foil by a laser pulse, at low $lln $ and R /A i within a low, narrow range, is given (4, is absorbed intensity, /zL wavelength, R focalspot radius). An approximate analytical solution is given for the two-dimensional plasma dynamics. At large magnetic Reynolds number Rm, the morphology of the magnetic field shows features in agreement with recent results for high intensities. Current lines are open: electric current flows toward the spot near its axis, then turns and flows away. The efficiency of converting light energy into electric energy peaks at Rm- 1, both the validity of the model. and accuracy of the solution are discussed, The neighborhood of the spot boundary is analyzed in detail by extending classical Prandtl-Meyer results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta tesis presenta un análisis teórico del funcionamiento de toberas magnéticas para la propulsión espacial por plasmas. El estudio está basado en un modelo tridimensional y bi-fluido de la expansión supersónica de un plasma caliente en un campo magnético divergente. El modelo básico es ampliado progresivamente con la inclusión de términos convectivos dominantes de electrones, el campo magnético inducido por el plasma, poblaciones electrónicas múltiples a distintas temperaturas, y la capacidad de integrar el flujo en la región de expansión lejana. La respuesta hiperbólica del plasma es integrada con alta precisión y eficiencia haciendo uso del método de las líneas características. Se realiza una caracterización paramétrica de la expansión 2D del plasma en términos del grado de magnetización de iones, la geometría del campo magnético, y el perfil inicial del plasma. Se investigan los mecanismos de aceleración, mostrando que el campo ambipolar convierte la energía interna de electrones en energía dirigida de iones. Las corrientes diamagnéticas de Hall, que pueden hallarse distribuidas en el volumen del plasma o localizadas en una delgada capa de corriente en el borde del chorro, son esenciales para la operación de la tobera, ya que la fuerza magnética repulsiva sobre ellas es la encargada de confinar radialmente y acelerar axialmente el plasma. El empuje magnético es la reacción a esta fuerza sobre el motor. La respuesta del plasma muestra la separación gradual hacia adentro de los tubos de iones respecto de los magnéticos, lo cual produce la formación de corrientes eléctricas longitudinales y pone el plasma en rotación. La ganancia de empuje obtenida y las pérdidas radiales de la pluma de plasma se evalúan en función de los parámetros de diseño. Se analiza en detalle la separación magnética del plasma aguas abajo respecto a las líneas magnéticas (cerradas sobre sí mismas), necesaria para la aplicación de la tobera magnética a fines propulsivos. Se demuestra que tres teorías existentes sobre separación, que se fundamentan en la resistividad del plasma, la inercia de electrones, y el campo magnético que induce el plasma, son inadecuadas para la tobera magnética propulsiva, ya que producen separación hacia afuera en lugar de hacia adentro, aumentando la divergencia de la pluma. En su lugar, se muestra que la separación del plasma tiene lugar gracias a la inercia de iones y la desmagnetización gradual del plasma que tiene lugar aguas abajo, que permiten la separación ilimitada del flujo de iones respecto a las líneas de campo en condiciones muy generales. Se evalúa la cantidad de plasma que permanece unida al campo magnético y retorna hacia el motor a lo largo de las líneas cerradas de campo, mostrando que es marginal. Se muestra cómo el campo magnético inducido por el plasma incrementa la divergencia de la tobera magnética y por ende de la pluma de plasma en el caso propulsivo, contrariamente a las predicciones existentes. Se muestra también cómo el inducido favorece la desmagnetización del núcleo del chorro, acelerando la separación magnética. La hipótesis de ambipolaridad de corriente local, común a varios modelos de tobera magnética existentes, es discutida críticamente, mostrando que es inadecuada para el estudio de la separación de plasma. Una inconsistencia grave en la derivación matemática de uno de los modelos más aceptados es señalada y comentada. Incluyendo una especie adicional de electrones supratérmicos en el modelo, se estudia la formación y geometría de dobles capas eléctricas en el interior del plasma. Cuando dicha capa se forma, su curvatura aumenta cuanto más periféricamente se inyecten los electrones supratérmicos, cuanto menor sea el campo magnético, y cuanto más divergente sea la tobera magnética. El plasma con dos temperaturas electrónicas posee un mayor ratio de empuje magnético frente a total. A pesar de ello, no se encuentra ninguna ventaja propulsiva de las dobles capas, reforzando las críticas existentes frente a las propuestas de estas formaciones como un mecanismo de empuje. Por último, se presenta una formulación general de modelos autosemejantes de la expansión 2D de una pluma no magnetizada en el vacío. El error asociado a la hipótesis de autosemejanza es calculado, mostrando que es pequeño para plumas hipersónicas. Tres modelos de la literatura son particularizados a partir de la formulación general y comparados. Abstract This Thesis presents a theoretical analysis of the operation of magnetic nozzles for plasma space propulsion. The study is based on a two-dimensional, two-fluid model of the supersonic expansion of a hot plasma in a divergent magnetic field. The basic model is extended progressively to include the dominant electron convective terms, the plasma-induced magnetic field, multi-temperature electron populations, and the capability to integrate the plasma flow in the far expansion region. The hyperbolic plasma response is integrated accurately and efficiently with the method of the characteristic lines. The 2D plasma expansion is characterized parametrically in terms of the ion magnetization strength, the magnetic field geometry, and the initial plasma profile. Acceleration mechanisms are investigated, showing that the ambipolar electric field converts the internal electron energy into directed ion energy. The diamagnetic electron Hall current, which can be distributed in the plasma volume or localized in a thin current sheet at the jet edge, is shown to be central for the operation of the magnetic nozzle. The repelling magnetic force on this current is responsible for the radial confinement and axial acceleration of the plasma, and magnetic thrust is the reaction to this force on the magnetic coils of the thruster. The plasma response exhibits a gradual inward separation of the ion streamtubes from the magnetic streamtubes, which focuses the jet about the nozzle axis, gives rise to the formation of longitudinal currents and sets the plasma into rotation. The obtained thrust gain in the magnetic nozzle and radial plasma losses are evaluated as a function of the design parameters. The downstream plasma detachment from the closed magnetic field lines, required for the propulsive application of the magnetic nozzle, is investigated in detail. Three prevailing detachment theories for magnetic nozzles, relying on plasma resistivity, electron inertia, and the plasma-induced magnetic field, are shown to be inadequate for the propulsive magnetic nozzle, as these mechanisms detach the plume outward, increasing its divergence, rather than focusing it as desired. Instead, plasma detachment is shown to occur essentially due to ion inertia and the gradual demagnetization that takes place downstream, which enable the unbounded inward ion separation from the magnetic lines beyond the turning point of the outermost plasma streamline under rather general conditions. The plasma fraction that remains attached to the field and turns around along the magnetic field back to the thruster is evaluated and shown to be marginal. The plasmainduced magnetic field is shown to increase the divergence of the nozzle and the resulting plasma plume in the propulsive case, and to enhance the demagnetization of the central part of the plasma jet, contrary to existing predictions. The increased demagnetization favors the earlier ion inward separation from the magnetic field. The local current ambipolarity assumption, common to many existing magnetic nozzle models, is critically discussed, showing that it is unsuitable for the study of plasma detachment. A grave mathematical inconsistency in a well-accepted model, related to the acceptance of this assumption, is found out and commented on. The formation and 2D shape of electric double layers in the plasma expansion is studied with the inclusion of an additional suprathermal electron population in the model. When a double layer forms, its curvature is shown to increase the more peripherally suprathermal electrons are injected, the lower the magnetic field strength, and the more divergent the magnetic nozzle is. The twoelectron- temperature plasma is seen to have a greater magnetic-to-total thrust ratio. Notwithstanding, no propulsive advantage of the double layer is found, supporting and reinforcing previous critiques to their proposal as a thrust mechanism. Finally, a general framework of self-similar models of a 2D unmagnetized plasma plume expansion into vacuum is presented and discussed. The error associated with the self-similarity assumption is calculated and shown to be small for hypersonic plasma plumes. Three models of the literature are recovered as particularizations from the general framework and compared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis of the electrostatic plasma instabilities excited by the application of a strong, uniform, alternating electric field is made on the basis of the Vlasov equation. A very general dispersion relation is obtained and discussed. Under the assumption W 2 O » C 2 pi. (where wO is the applied frequency and wpi the ion plasma frequency) a detailed analysis is given for wavelengths of the order of or large compared with the Debye length. It is found that there are two types of instabilities: resonant (or parametric) and nonresonant. The second is caused by the relative streaming of ions and electrons, generated by the field; it seems to exist only if wO is less than the electron plasma frequency wpe. The instability only appears if the field exceeds a certain threshold, which is found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical behaviour of cholesteric mixtures of negative dielectric anisotrony under electric fields is reported. A mixture of S 311~ (31.35 %) + N 5 was employed. AC voltages (f = 1000 Hz) betweeen 0 and 150 volts were applied. Cells 23 micron thick, with internal SnO2 electrodes, were used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variation in the adoption of a technology as a major source of competitive advantage has been attributed to the wide-ranging strategic foresight and the integrative capability of a firm. These possible areas of competitive advantage can exist in the periphery of the firm's strategic vision and can get easily blurred as a result of rigidness and can permeate in the decision-making process of the firm. This article explores how electric utility firms with a renewable energy portfolio can become strategically rigid in terms of adoption of newer technologies. The reluctance or delay in the adoption of new technology can be characterized as strategic rigidness, brought upon as a result of a firm's core competence or core capability in the other, more conventional technology arrangement. This paper explores the implications of such rigidness on the performance of a firm and consequently on the energy eco-system. The paper substantiates the results by emphasizing the case of Iberdrola S.A., an incumbent firm as a wind energy developer and its adoption decision behavior. We illustrate that the very routines that create competitive advantage for firms in the electric utility industry are vulnerable as they might also develop as sources of competitive disadvantage, when firms confront environmental change and uncertainty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrodynamic tether thrusters can use the power provided by solar panels to drive a current in the tether and then the Lorentz force to push against the Earth's magnetic field, thereby achieving propulsion without the expenditure of onboard energy sources or propellant. Practical tether propulsion depends critically on being able to extract multiamp electron currents from the ionosphere with relatively short tethers (10 km or less) and reasonably low power. We describe a new anodic design that uses an uninsulated portion of the metallic tether itself to collect electrons. Because of the efficient collection of this type of anode, electrodynamic thrusters for reboost of the International Space Station and for an upper stage capable of orbit raising, lowering, and inclination changes appear to be feasible. Specifically, a 10-km-long bare tether, utilizing 10 kW of the space station power could save most of the propellant required for the station reboost over its 10-year lifetime. The propulsive small expendable deployer system experiment is planned to test the bare-tether design in space in the year 2000 by deploying a 5-km bare aluminum tether from a Delta II upper stage to achieve up to 0.5-N drag thrust, thus deorbiting the stage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An electrodynamic tether can propel a spacecraft through a planetary magnetized plasma without using propellant. In the classical embodiment of an electrodynamic tether, the ambient magnetic fleld exerts a Lorentz force on the current along the tether, the ambient plasma providing circuit closure for the current A suggested propulsion scheme would hypothetically eliminate tether performance dependence on the plasma density by using a full wire loop to close the current circuit, and a superconductor to shield a loop segment from the external uniform magnetic fleld and cancel the Lorentz force on that segment. Here, we use basic electromagnetic laws to explain how such a scheme cannot produce a net force. Because there is no net current in the superconducting shield, the circulation of the magnetic field along a closed line outside the full cross section, in its plane, is just due to the current flowing in the loop segment. The presence of the superconducting shield simply moves the Lorentz force from the shielded loop segment to the shield itself and, as a result, the total magnetic force, acting on full loop plus shield, remains zero.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In hybrid and electric vehicles, passengers sit very close to an electric system of significant power, which means that they may be subjected to high electromagnetic fields. The hazards of long-term exposure to these fields must be taken into account when designing electric vehicles and their components. Among all the electric devices present in the power train, the electronic converter is the most difficult to analyze, given that it works with different frequencies. In this paper, a methodology to evaluate the magnetic field created by a power electronics converter is proposed. After a brief overview of the recommendations of electromagnetic fields exposure, the magnetic field produced by an inverter is analyzed using finite element techniques. The results obtained are compared to laboratory measurements, taken from a real inverter, in order to validate the model. Finally, results are used to draw some conclusions regarding vehicle design criteria and magnetic shielding efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High power density is strongly preferable for the on-board battery charger of Plug-in Hybrid Electric Vehicle (PHEV). Wide band gap devices, such as Gallium Nitride HEMTs are being explored to push to higher switching frequency and reduce passive component size. In this case, the bulk DC link capacitor of AC-DC Power Factor Correction (PFC) stage, which is usually necessary to store ripple power of two times the line frequency in a DC current charging system, becomes a major barrier on power density. If low frequency ripple is allowed in the battery, the DC link capacitance can be significantly reduced. This paper focuses on the operation of a battery charging system, which is comprised of one Full Bridge (FB) AC-DC stage and one Dual Active Bridge (DAB) DC-DC stage, with charging current containing low frequency ripple at two times line frequency, designated as sinusoidal charging. DAB operation under sinusoidal charging is investigated. Two types of control schemes are proposed and implemented in an experimental prototype. It is proved that closed loop current control is the better. Full system test including both FB AC-DC stage and DAB DC-DC stage verified the concept of sinusoidal charging, which may lead to potentially very high power density battery charger for PHEV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the impact of electric mobility on the transmission grid in Flanders region (Belgium), using a micro-simulation activity based models. These models are used to provide temporal and spatial estimation of energy and power demanded by electric vehicles (EVs) in different mobility zones. The increment in the load demand due to electric mobility is added to the background load demand in these mobility areas and the effects over the transmission substations are analyzed. From this information, the total storage capacity per zone is evaluated and some strategies for EV aggregator are proposed, allowing the aggregator to fulfill bids on the electricity markets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Batteries and ultracapacitors for hybrid and electric vehicles must satisfy very demanding working conditions that are not usual in other applications. In this sense, specific tests must be performed in order to draw accurate conclusions about their behaviour. To do so, new advanced test benches are needed. These platforms must allow the study of a wide variety of energy storage systems under conditions similar to the real ones. In this paper, a flexible, low-cost and highly customizable system is presented. This system allows batteries and ultracapacitors to be tested in many and varied ways, effectively emulating the working conditions that they face in an electric vehicle. The platform was specifically designed to study energy storage systems for electric and hybrid vehicles, meaning that it is suitable to test different systems in many different working conditions, including real driving cycles. This flexibility is achieved keeping the cost of the platform low, which makes the proposed test bench a feasible alternative for the industry. As an example of the functionality of the platform, a test consisting of a 17-minute ARTEMIS urban cycle with a NiMH battery pack is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The decision to select the most suitable type of energy storage system for an electric vehicle is always difficult, since many conditionings must be taken into account. Sometimes, this study can be made by means of complex mathematical models which represent the behavior of a battery, ultracapacitor or some other devices. However, these models are usually too dependent on parameters that are not easily available, which usually results in nonrealistic results. Besides, the more accurate the model, the more specific it needs to be, which becomes an issue when comparing systems of different nature. This paper proposes a practical methodology to compare different energy storage technologies. This is done by means of a linear approach of an equivalent circuit based on laboratory tests. Via these tests, the internal resistance and the self-discharge rate are evaluated, making it possible to compare different energy storage systems regardless their technology. Rather simple testing equipment is sufficient to give a comparative idea of the differences between each system, concerning issues such as efficiency, heating and self-discharge, when operating under a certain scenario. The proposed methodology is applied to four energy storage systems of different nature for the sake of illustration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Engineering of devices and systems such as magnets, fault current limiters or cables, based on High Temperature Superconducting wires requires a deep characterization of the possible degradation of their properties by handling at room temperature as well as during the service life thus establishing the limits for building up functional devices and systems. In the present work we report our study regarding the mechanical behavior of spliced joints between commercial HTS coated conductors based on YBCO at room temperature and service temperature, 77 K. Tensile tests under axial stress and the evolution of the critical current and the electric resistance of the joints have been measured. The complete strain contour for the tape and the joint has been obtained by using Digital Image Correlation. Also, tensile tests under external magnetic field have been performed and the effect of the applied field on the critical current and the electric resistance of the joints has been studied. Finally, a preliminary numerical study by means of Finite Element Method (FEM) of the mechanical behavior of the joints between commercial HTS is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Engineering of devices and systems such as magnets, fault current limiters or cables, based on High Temperature Superconducting wires requires a deep characterization of the possible degradation of their properties by handling at room temperature as well as during the service life thus establishing the limits for building up functional devices and systems. In the present work we report our study regarding the mechanical behavior of spliced joints between commercial HTS coated conductors based on YBCO at room temperature and service temperature, 77 K. Tensile tests under axial stress and the evolution of the critical current and the electric resistance of the joints have been measured. The complete strain contour for the tape and the joints has been obtained by using Digital Image Correlation. Also, tensile tests under external magnetic field have been performed and the effect of the applied field on the critical current and the electric resistance of the joints has been studied. Additionally, fatigue tests under constant cyclic stress and loading-unloading ramps have been carried out in order to evaluate the electromechanical behavior of the joints and the effect of maximum applied stress on the critical current. Finally, a preliminary numerical study by means of the Finite Element Method (FEM) of the electromechanical behavior of the joints between commercial HTS is presented.