985 resultados para Elastic shear buckling
Resumo:
High temperature bonded interface indentation experiments are carried out on a Zr based bulk metallic glass (BMG) to examine the plastic deformation characteristics in subsurface deformation zone under a Vickers indenter. The results show that the shear bands are semi-circular in shape and propagate in radial direction. At all temperatures the inter-band spacing along the indentation axis is found to increase with increasing distance from the indenter tip. The average shear band spacing monotonically increases with temperature whereas the shear band induced plastic deformation zone is invariant with temperature. These observations are able to explain the increase in pressure sensitive plastic flow of BMGs with temperature. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We derive sum rules which constrain the spectral density corresponding to the retarded propagator of the T-xy component of the stress tensor for three gravitational duals. The shear sum rule is obtained for the gravitational dual of the N = 4 Yang-Mills, theory of the M2-branes and M5-branes all at finite chemical potential. We show that at finite chemical potential there are additional terms in the sum rule which involve the chemical potential. These modifications are shown to be due to the presence of scalars in the operator product expansion of the stress tensor which have non-trivial vacuum expectation values at finite chemical potential.
Resumo:
In this work, the effects of loading rate, material rate sensitivity and constraint level on quasi-static crack tip fields in a FCC single crystal are studied. Finite element simulations are performed within a mode I, plane strain modified boundary layer framework by prescribing the two term (K-T) elastic crack tip field as remote boundary conditions. The material is assumed to obey a rate-dependent crystal plasticity theory. The orientation of the single crystal is chosen so that the crack surface coincides with the crystallographic (010) plane and the crack front lies along 101] direction. Solutions corresponding to different stress intensity rates K., T-stress values and strain rate exponents m are obtained. The results show that the stress levels ahead of the crack tip increase with K. which is accompanied by gradual shrinking of the plastic zone size. However, the nature of the shear band patterns around the crack tip is not affected by the loading rate. Further, it is found that while positive T-stress enhances the opening and hydrostatic stress levels ahead of crack tip, they are considerably reduced with imposition of negative T-stress. Also, negative T-stress promotes formation of shear bands in the forward sector ahead of the crack tip and suppresses them behind the tip.
Resumo:
In the present work, the effect of longitudinal magnetic field on wave dispersion characteristics of equivalent continuum structure (ECS) of single-walled carbon nanotubes (SWCNT) embedded in elastic medium is studied. The ECS is modelled as an Euler-Bernoulli beam. The chemical bonds between a SWCNT and the elastic medium are assumed to be formed. The elastic matrix is described by Pasternak foundation model, which accounts for both normal pressure and the transverse shear deformation. The governing equations of motion for the ECS of SWCNT under a longitudinal magnetic field are derived by considering the Lorentz magnetic force obtained from Maxwell's relations within the frame work of nonlocal elasticity theory. The wave propagation analysis is performed using spectral analysis. The results obtained show that the velocity of flexural waves in SWCNTs increases with the increase of longitudinal magnetic field exerted on it in the frequency range: 0-20 THz. The present analysis also shows that the flexural wave dispersion in the ECS of SWCNT obtained by local and nonlocal elasticity theories differ. It is found that the nonlocality reduces the wave velocity irrespective of the presence of the magnetic field and does not influences it in the higher frequency region. Further it is found that the presence of elastic matrix introduces the frequency band gap in flexural wave mode. The band gap in the flexural wave is found to independent of strength of the longitudinal magnetic field. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The mechanical properties of clays are highly dependent not only on the stress/strain ratio to which the material is subjected but also on the chemistry of the pore fluids which in turn affects the intergranular or the effective stresses. Atterberg limits and vane shear tests were performed with different pore fluids in order to observe how the fine-grained material mechanically responded. The diffuse double layer theory has been used to interpret the data of vane shear tests in order to explain the variation of geotechnical responses with the different clays. Van der Waals forces and double layer forces were obtained and capillary forces calculated. The results show that while for kaolinite and illite the chemistry of the pore fluids has no influence on the water content and hence on the mechanical behaviour of the material, Na-smectite shows a strong correlation between the dielectric constant of the pore fluids and an increase in undrained shear strength. The data obtained extends an understanding of the influence of the dielectric constant (epsilon) of the pore fluids on the geotechnical properties of fine-grained materials.
Resumo:
This paper presents the effect of nonlocal scaling parameter on the coupled i.e., axial, flexural, shear and contraction, wave propagation in single-walled carbon nanotubes (SWCNTs). The axial and transverse motion of SWCNT is modeled based on first order shear deformation theory (FSDT) and thickness contraction. The governing equations are derived based on nonlocal constitutive relations and the wave dispersion analysis is also carried out. The studies shows that the nonlocal scale parameter introduces certain band gap region in all wave modes where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite or wave speed tends to zero. The frequency at which this phenomenon occurs is called the escape frequency. Explicit expressions are derived for cut-off and escape frequencies of all waves in SWCNT. It is also shown that the cut-off frequencies of shear and contraction mode are independent of the nonlocal scale parameter. The results provided in this article are new and are useful guidance for the study and design of the next generation of nanodevices that make use of the coupled wave propagation properties of single-walled carbon nanotubes.
Resumo:
A minimum weight design of laminated composite structures is carried out for different loading conditions and failure criteria using genetic algorithm. The phenomenological maximum stress (MS) and Tsai-Wu (TW) criteria and the micro-mechanism-based failure mechanism based (FMB) failure criteria are considered. A new failure envelope called the Most Conservative Failure Envelope (MCFE) is proposed by combining the three failure envelopes based on the lowest absolute values of the strengths predicted. The effect of shear loading on the MCFE is investigated. The interaction between the loading conditions, failure criteria, and strength-based optimal design is brought out.
Resumo:
This paper is a review prepared for the second Marseille Colloquium on the mechanics of turbulence, held in 2011, 50 years after the first. The review covers recent developments in our understanding of the large-scale dynamics of cumulus cloud flows and of the atmospheric boundary layer in the low-wind convective regime that is often encountered in the tropics. It has recently been shown that a variety of cumulus cloud forms and life cycles can be experimentally realized in the laboratory, with the transient diabatic plume taken as the flow model for a cumulus cloud. The plume is subjected to diabatic heating scaled to be dynamically similar to heat release from phase changes in clouds. The experiments are complemented by exact numerical solutions of the Navier-Stokes-Boussinesq equations for plumes with scaled off-source heating. The results show that the Taylor entrainment coefficient first increases with heating, reaches a positive maximum and then drops rapidly to zero or even negative values. This reduction in entrainment is a consequence of structural changes in the flow, smoothing out the convoluted boundaries in the non-diabatic plume, including the tongues engulfing the ambient flow. This is accompanied by a greater degree of mixedness in the core flow because of lower dilution by the ambient fluid. The cloud forms generated depend strongly on the history of the diabatic heating profile in the vertical direction. The striking effects of heating on the flow are attributable to the operation of the baroclinic torque due to the temperature field. The mean baroclinic torque is shown to peak around a quasi-cylindrical sheet situated midway between the axis of the flow and the edges. This torque is shear-enhancing and folds down the engulfment tongues. The increase in mixedness can be traced to an explosive growth in the enstrophy, triggered by a strong fluctuating baroclinic torque that acts as a source, especially at the higher wave numbers, thus enhancing the mixedness. In convective boundary layers field measurements show that, under conditions prevailing in the tropics, the eddy fluxes of momentum and energy do not follow the Monin-Obukhov similarity. Instead, the eddy momentum flux is found to be linear in the wind speed at low winds; and the eddy heat flux is, to a first approximation, governed by free convection laws, with wind acting as a small perturbation on a regime of free convection. A new boundary layer code, based on heat flux scaling rather than wall-stress scaling, shows promising improvements in predictive skills of a general circulation model.
Resumo:
We consider an inverse elasticity problem in which forces and displacements are known on the boundary and the material property distribution inside the body is to be found. In other words, we need to estimate the distribution of constitutive properties using the finite boundary data sets. Uniqueness of the solution to this problem is proved in the literature only under certain assumptions for a given complete Dirichlet-to-Neumann map. Another complication in the numerical solution of this problem is that the number of boundary data sets needed to establish uniqueness is not known even under the restricted cases where uniqueness is proved theoretically. In this paper, we present a numerical technique that can assess the sufficiency of given boundary data sets by computing the rank of a sensitivity matrix that arises in the Gauss-Newton method used to solve the problem. Numerical experiments are presented to illustrate the method.
Resumo:
Wave propagation in graphene sheet embedded in elastic medium (polymer matrix) has been a topic of great interest in nanomechanics of graphene sheets, where the equivalent continuum models are widely used. In this manuscript, we examined this issue by incorporating the nonlocal theory into the classical plate model. The influence of the nonlocal scale effects has been investigated in detail. The results are qualitatively different from those obtained based on the local/classical plate theory and thus, are important for the development of monolayer graphene-based nanodevices. In the present work, the graphene sheet is modeled as an isotropic plate of one-atom thick. The chemical bonds are assumed to be formed between the graphene sheet and the elastic medium. The polymer matrix is described by a Pasternak foundation model, which accounts for both normal pressure and the transverse shear deformation of the surrounding elastic medium. When the shear effects are neglected, the model reduces to Winkler foundation model. The normal pressure or Winkler elastic foundation parameter is approximated as a series of closely spaced, mutually independent, vertical linear elastic springs where the foundation modulus is assumed equivalent to stiffness of the springs. For this model, the nonlocal governing differential equations of motion are derived from the minimization of the total potential energy of the entire system. An ultrasonic type of flexural wave propagation model is also derived and the results of the wave dispersion analysis are shown for both local and nonlocal elasticity calculations. From this analysis we show that the elastic matrix highly affects the flexural wave mode and it rapidly increases the frequency band gap of flexural mode. The flexural wavenumbers obtained from nonlocal elasticity calculations are higher than the local elasticity calculations. The corresponding wave group speeds are smaller in nonlocal calculation as compared to local elasticity calculation. The effect of y-directional wavenumber (eta(q)) on the spectrum and dispersion relations of the graphene embedded in polymer matrix is also observed. We also show that the cut-off frequencies of flexural wave mode depends not only on the y-direction wavenumber but also on nonlocal scaling parameter (e(0)a). The effect of eta(q) and e(0)a on the cut-off frequency variation is also captured for the cases of with and without elastic matrix effect. For a given nanostructure, nonlocal small scale coefficient can be obtained by matching the results from molecular dynamics (MD) simulations and the nonlocal elasticity calculations. At that value of the nonlocal scale coefficient, the waves will propagate in the nanostructure at that cut-off frequency. In the present paper, different values of e(0)a are used. One can get the exact e(0)a for a given graphene sheet by matching the MD simulation results of graphene with the results presented in this article. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The existence of an indentation size effect (ISE) in the onset of yield in a Zr-based bulk metallic glass (BMG) is investigated by employing spherical-tip nanoindentation experiments. Statistically significant data on the load at which the first pop-in in the displacement occurs were obtained for three different tip radii and in two different structural states (as-cast and structurally relaxed) of the BMG. Hertzian contact mechanics were employed to convert the pop-in loads to the maximum shear stress underneath the indenter. Results establish the existence of an ISE in the BMG of both structural states, with shear yield stress increasing with decreasing tip radius. Structural relaxation was found to increase the yield stress and decrease the variability in the data, indicating ``structural homogenization'' with annealing. Statistical analysis of the data was employed to estimate the shear transformation zone (STZ) size. Results of this analysis indicate an STZ size of similar to 25 atoms, which increases to similar to 34 atoms upon annealing. These observations are discussed in terms of internal structure changes that occur during structural relaxation and their interaction with the stressed volumes in spherical indentation of a metallic glass. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Ultrasonic wave propagation in a graphene sheet, which is embedded in an elastic medium, is studied using nonlocal elasticity theory incorporating small-scale effects. The graphene sheet is modeled as an one-atom thick isotropic plate and the elastic medium/substrate is modeled as distributed springs. For this model, the nonlocal governing differential equations of motion are derived from the minimization of the total potential energy of the entire system. After that, an ultrasonic type of wave propagation model is also derived. The explicit expressions for the cut-off frequencies are also obtained as functions of the nonlocal scaling parameter and the y-directional wavenumber. Local elasticity shows that the wave will propagate even at higher frequencies. But nonlocal elasticity predicts that the waves can propagate only up to certain frequencies (called escape frequencies), after which the wave velocity becomes zero. The results also show that the escape frequencies are purely a function of the nonlocal scaling parameter. The effect of the elastic medium is captured in the wave dispersion analysis and this analysis is explained with respect to both local and nonlocal elasticity. The simulations show that the elastic medium affects only the flexural wave mode in the graphene sheet. The presence of the elastic matrix increases the band gap of the flexural mode. The present results can provide useful guidance for the design of next-generation nanodevices in which graphene-based composites act as a major element.
Resumo:
The origin of hydrodynamic turbulence in rotating shear flows is investigated, with particular emphasis on the flows whose angular velocity decreases but whose specific angular momentum increases with the increasing radial coordinate. Such flows are Rayleigh stable, but must be turbulent in order to explain the observed data. Such a mismatch between the linear theory and the observations/experiments is more severe when any hydromagnetic/magnetohydrodynamic instability and then the corresponding turbulence therein is ruled out. This work explores the effect of stochastic noise on such hydrodynamic flows. We essentially concentrate on a small section of such a flow, which is nothing but a plane shear flow supplemented by the Coriolis effect. This also mimics a small section of an astrophysical accretion disc. It is found that such stochastically driven flows exhibit large temporal and spatial correlations of perturbation velocities and hence large energy dissipations of perturbation, which presumably generate the instability. A range of angular velocity (Omega) profiles of the background flow, starting from that of a constant specific angular momentum (lambda = Omega r(2); r being the radial coordinate) to a constant circular velocity (v(phi) = Omega r), is explored. However, all the background angular velocities exhibit identical growth and roughness exponents of their perturbations, revealing a unique universality class for the stochastically forced hydrodynamics of rotating shear flows. This work, to the best of our knowledge, is the first attempt to understand the origin of instability and turbulence in three-dimensional Rayleigh stable rotating shear flows by introducing additive noise to the underlying linearized governing equations. This has important implications to resolve the turbulence problem in astrophysical hydrodynamic flows such as accretion discs.
Resumo:
Analyses of the invariants of the velocity gradient ten- sor were performed on flow fields obtained by DNS of compressible plane mixing layers at convective Mach num- bers Mc=0:15 and 1.1. Joint pdfs of the 2nd and 3rd invariants were examined at turbulent/nonturbulent (T/NT) boundaries—defined as surfaces where the local vorticity first exceeds a threshold fraction of the maximum of the mean vorticity. By increasing the threshold from very small lev-els, the boundary points were moved closer into the turbulent region, and the effects on the pdfs of the invariants were ob-served. Generally, T/NT boundaries are in sheet-like regions at both Mach numbers. At the higher Mach number a distinct lobe appears in the joint pdf isolines which has not been ob-served/reported before. A connection to the delayed entrain-ment and reduced growth rate of the higher Mach number flow is proposed.
Resumo:
Recent experimental studies have revealed nanoscale cavities and periodic corrugations on the fracture surfaces of brittle metallic glasses. How such cavitation in these materials leads to brittle failure remains unclear. Here we show, using atomistic and continuum finite element simulations, that a shear band can mediate cavity nucleation and coalescence owing to plastic flow confinement caused by material softening. This leads to brittle fracture as cavities nucleate and coalesce within a shear band, causing the crack to extend along it. (c) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.