932 resultados para ENERGY-PARTITIONING ANALYSIS
Energy-efficient diversity combining for different access schemes in a multi-path dispersive channel
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e Computadores
Resumo:
Dissertação para obtenção do Grau de Doutor em Alterações Climáticas e Políticas de Desenvolvimento Sustentável
Resumo:
Dissertação para obtenção do Grau de Doutor em Ambiente
Resumo:
This paper presents a preliminary acoustic study concerning the development of the first prototype of a patented removable module for interior partitioning. It is a prefabricated, vertical element for division of interior spaces that does not require the use of gutters or technical support. A set of such modules, linearly disposed, will create a division, allowing the personalization of any indoor area, including open office spaces, rooms, among others. The main characteristic that distinguishes this element from the existing solutions available on the market is that its mobility relies exclusively on a set of integrated bearings at the base of each module. Through an incorporated elevation system, the user can lower the module, move it to the desired position and re-elevate it until pressed against the ledge of the ceiling, making it stable. In this sense, and taking into account its acoustic behavior, several tests were made in the LNEC acoustics lab. Airborne sound insulation tests for different typologies of the prototype were conducted, according to the applicable standards EN ISO 354:2003, EN ISO 717-1:2013 and EN ISO 10140-2:2010. Some important conclusions and analysis of the prototype viability were extracted.
Resumo:
One of the biggest challenges for humanity is global warming and consequently, climate changes. Even though there has been increasing public awareness and investments from numerous countries concerning renewable energies, fossil fuels are and will continue to be in the near future, the main source of energy. Carbon capture and storage (CCS) is believed to be a serious measure to mitigate CO2 concentration. CCS briefly consists of capturing CO2 from the atmosphere or stationary emission sources and transporting and storing it via mineral carbonation, in oceans or geological media. The latter is referred to as carbon capture and geological storage (CCGS) and is considered to be the most promising of all solutions. Generally it consists of a storage (e.g. depleted oil reservoirs and deep saline aquifers) and sealing (commonly termed caprock in the oil industry) formations. The present study concerns the injection of CO2 into deep aquifers and regardless injection conditions, temperature gradients between carbon dioxide and the storage formation are likely to occur. Should the CO2 temperature be lower than the storage formation, a contractive behaviour of the reservoir and caprock is expected. The latter can result in the opening of new paths or re-opening of fractures, favouring leakage and compromising the CCGS project. During CO2 injection, coupled thermo-hydro-mechanical phenomena occur, which due to their complexity, hamper the assessment of each relative influence. For this purpose, several analyses were carried out in order to evaluate their influences but focusing on the thermal contractive behaviour. It was finally concluded that depending on mechanical and thermal properties of the pair aquifer-seal, the sealing caprock can undergo significant decreases in effective stress.
Resumo:
Three different treatments were applied on several specimens of dolomitic and calcitic marble, properly stained with rust to mimic real situations (the stone specimens were exposed to the natural environment for about six months in contact with rusted iron). Thirty six marble specimens, eighteen calcitic and eighteen dolomitic, were characterized before and after treatment and monitored throughout the cleaning tests. The specimens were characterized by SEM-EDS (Scanning Electron Microscopy coupled with Energy Dispersion System), XRD (XRay Diffraction), XRF (X-Ray Fluorescence), FTIR (Fourier Transform Infrared Spectroscopy) and color measurements. It was also made a microscopic and macroscopic analysis of the stone surface along with the tests of short and long term capillary absorption. A series of test trials were conducted in order to understand which concentrations and contact times best suits to this purpose, to confirm what had been written to date in the literature. We sought to develop new methods of treatment application, skipping the usual methods of applying chemical treatments on stone substrates, with the use of cellulose poultice, resorting to the agar, a gel already used in many other areas, being something new in this area, which possesses great applicability in the field of conservation of stone materials. After the application of the best methodology for cleaning, specimens were characterized again in order to understand which treatment was more effective and less harmful, both for the operator and the stone material. Very briefly conclusions were that for a very intense and deep penetration into the stone, a solution of 3.5% of SDT buffered with ammonium carbonate to pH around 7 applied with agar support would be indicated. For rust stains in its initial state, the use of Ammonium citrate at a concentration of 5% buffered with ammonium to pH 7 could be applied more than once until satisfactory results appear.
Resumo:
Based on the report for the unit “Project IV” of the PhD programme on Technology Assessment under the supervision of Dr.-Ing. Marcel Weil and Prof. Dr. António Brandão Moniz. The report was presented and discussed at the Doctorate Conference on Technologogy Assessment in July 2013 at the University Nova Lisboa, Caparica campus.
Resumo:
An energy harvesting system requires an energy storing device to store the energy retrieved from the surrounding environment. This can either be a rechargeable battery or a supercapcitor. Due to the limited lifetime of rechargeable batteries, they need to be periodically replaced. Therefore, a supercapacitor, which has ideally a limitless number of charge/discharge cycles can be used to store the energy; however, a voltage regulator is required to obtain a constant output voltage as the supercapacitor discharges. This can be implemented by a Switched-Capacitor DC-DC converter which allows a complete integration in CMOS technology, although it requires several topologies in order to obtain a high efficiency. This thesis presents the complete analysis of four different topologies in order to determine expressions that allow to design and determine the optimum input voltage ranges for each topology. To better understand the parasitic effects, the implementation of the capacitors and the non-ideal effect of the switches, in 130 nm technology, were carefully studied. With these two analysis a multi-ratio SC DC-DC converter was designed with an output power of 2 mW, maximum efficiency of 77%, and a maximum output ripple, in the steady state, of 23 mV; for an input voltage swing of 2.3 V to 0.85 V. This proposed converter has four operation states that perform the conversion ratios of 1/2, 2/3, 1/1 and 3/2 and its clock frequency is automatically adjusted to produce a stable output voltage of 1 V. These features are implemented through two distinct controller circuits that use asynchronous time machines (ASM) to dynamically adjust the clock frequency and to select the active state of the converter. All the theoretical expressions as well as the behaviour of the whole system was verified using electrical simulations.
Resumo:
Prolonged total food deprivation in non-obese adults is rare, and few studies have documented body composition changes in this setting. In a group of eight hunger strikers who refused alimentation for 43 days, water and energy compartments were estimated, aiming to assess the impact of progressive starvation. Measurements included body mass index (BMI), triceps skinfold (TSF), arm muscle circumference (AMC), and bioimpedance (BIA) determinations of water, fat, lean body mass (LBM), and total resistance. Indirect calorimetry was also performed in one occasion. The age of the group was 43.3±6.2 years (seven males, one female). Only water, intermittent vitamins and electrolytes were ingested, and average weight loss reached 17.9%. On the last two days of the fast (43rd-44th day) rapid intravenous fluid, electrolyte, and vitamin replenishment were provided before proceeding with realimentation. Body fat decreased approximately 60% (BIA and TSF), whereas BMI reduced only 18%. Initial fat was estimated by BIA as 52.2±5.4% of body weight, and even on the 43rd day it was still measured as 19.7±3.8% of weight. TSF findings were much lower and commensurate with other anthropometric results. Water was comparatively low with high total resistance, and these findings rapidly reversed upon the intravenous rapid hydration. At the end of the starvation period, BMI (21.5±2.6 kg/m²) and most anthropometric determinations were still acceptable, suggesting efficient energy and muscle conservation. Conclusions: 1) All compartments diminished during fasting, but body fat was by far the most affected; 2) Total water was low and total body resistance comparatively elevated, but these findings rapidly reversed upon rehydration; 3) Exaggerated fat percentage estimates from BIA tests and simultaneous increase in lean body mass estimates suggested that this method was inappropriate for assessing energy compartments in the studied population; 4) Patients were not morphologically malnourished after 43 days of fasting; however, the prognostic impact of other impairments was not considered in this analysis.
Resumo:
Based on the report for the unit “Métodos Interactivos de Participação e Decisão A” (Interactive methods of participation and decision A), coordinated by Prof. Lia Maldonado Teles de Vasconcelos and Prof. Nuno Miguel Ribeiro Videira Costa. This unit was provided for the PhD Program in Technology Assessment in 2015/2016.
Resumo:
This paper presents a new approach of pre-defined profiles, based in different voltage and current values, to control the charging and discharging processes of batteries in order to assess their performance. This new approach was implemented in a prototype that was specially developed for such purpose. This prototype is a smart power electronics platform that allows to perform batteries analysis and to control the charging and discharging processes through a web application using pre-defined profiles. This platform was developed aiming to test different batteries technologies. Considering the relevance of the energy storage area based in batteries, especially for the batteries applied to electric mobility systems, this platform allows to perform controlled tests to the batteries, in order to analyze the batteries performance under different scenarios of operation. Besides the results obtained with the batteries, this work also intends to produce results that can contribute to an involvement in the strengthening of the Internet-of-Things.
Resumo:
This paper proposes a multifunctional converter to interface renewable energy sources (e.g., solar photovoltaic panels) and electric vehicles (EVs) with the power grid in smart grids context. This multifunctional converter allows deliver energy from the solar photovoltaic panels to an EV or to the power grid, and exchange energy in bidirectional mode between the EV and the power grid. Using this multifunctional converter are not required multiple conversion stages, as occurs with the traditional solutions, where are necessary two power converters to integrate the solar photovoltaic system in the power grid and also two power converters to integrate an off-board EV battery charger in the power grid (dc-dc and dc-ac power converters in both cases). Taking into account that the energy provided (or delivered) from the power grid in each moment is function of the EV operation mode and also of the energy produced from the solar photovoltaic system, it is possible to define operation strategies and control algorithms in order to increase the energy efficiency of the global system and to improve the power quality of the electrical system. The proposed multifunctional converter allows the operation in four distinct cases: (a) Transfer of energy from the solar photovoltaic system to the power grid; (b) Transfer of energy from the solar photovoltaic system and from the EV to the power grid; (c) Transfer of energy from the solar photovoltaic system to the EV or to the power grid; (d) Transfer of energy between the EV and the power grid. Along the paper are described the system architecture and the control algorithms, and are also presented some computational simulation results for the four aforementioned cases. It is also presented a comparative analysis between the traditional and the proposed solution in terms of operation efficiency and estimated cost of implementation.
Resumo:
Sustainability is frequently defined by its three pillars: economically viable, socially equitable, and environmentally bearable. Consequently the evaluation of the sustainability of any decision, public or private, requires information on these three dimensions. This paper focuses on social sustainability. In the context of renewable energy sources, the examination of social sustainability requires the analysis of not only the efficiency but also the equity of its welfare impacts. The present paper proposes and applies a methodology to generate the information necessary to do a proper welfare analysis of the social sustainability of renewable energy production facilities. This information is key both for an equity and an efficiency analysis. The analysis focuses on the case of investments in renewable energy electricity production facilities, where the impacts on local residents’ welfare are often significantly different than the welfare effects on the general population. We apply the contingent valuation method to selected facilities across the different renewable energy power plants located in Portugal and conclude that local residents acknowledge differently the damage sustained by the type, location and operation of the plants. The results from these case studies attest to the need of acknowledging and quantifying the negative impacts on local communities when assessing the economic viability, social equity and environmental impact of renewable energy projects.
Resumo:
Timber connections represent the crucial part of a timber structure and a great variability exists in terms of types of connections and mechanisms. Taking as case study the widespread traditional timber frame structures, in particular the Portuguese Pombalino buildings, one of the most common timber connection is the half-lap joint. Connections play a major role in the overall behaviour of a structure, particularly when assessing their seismic response, since damage is concentrated at the connections. For this reason, an experimental campaign was designed and distinct types of tests were carried out on traditional half-lap joints to assess their in-plane response. In particular, pull-out and in-plane cyclic tests were carried out on real scale unreinforced connections. Subsequently, the connections were retrofitted, using strengthening techniques such as self-tapping screws, steel plates and GFRP sheets. The tests chosen were meant to capture the hysteretic behaviour and dissipative capacity of the connections and characterise their response and, therefore, their influence on the seismic response of timber frame walls, particularly concerning their uplifting and rotation capacity, that could lead to rocking in the walls. In this paper, the results of the experimental campaign are presented in terms of hysteretic curves, dissipated energy and equivalent viscous damping ratio. Moreover, recommendations are provided on the most appropriate retrofitting solutions.
Resumo:
Existing masonry structures are usually associated to a high seismic vulnerability, mainly due to the properties of the materials, weak connections between floors and load-bearing walls, high mass of the masonry walls and flexibility of the floors. For these reasons, the seismic performance of existing masonry structures has received much attention in the last decades. This study presents the parametric analysis taking into account the deviations on features of the gaioleiro buildings - Portuguese building typology. The main objective of the parametric analysis is to compare the seismic performance of the structure as a function of the variations of its properties with respect to the response of a reference model. The parametric analysis was carried out for two types of structural analysis, namely for the non-linear dynamic analysis with time integration and for the pushover analysis with distribution of forces proportional to the inertial forces of the structure. The Young's modulus of the masonry walls, Young's modulus of the timber floors, the compressive and tensile non-linear properties (strength and fracture energy) were the properties considered in both type of analysis. Additionally, in the dynamic analysis, the influences of the vis-cous damping and of the vertical component of the earthquake were evaluated. A pushover analysis proportional to the modal displacement of the first mode in each direction was also carried out. The results shows that the Young's modulus of the masonry walls, the Young's modulus of the timber floors and the compressive non-linear properties are the pa-rameters that most influence the seismic performance of this type of tall and weak existing masonry structures. Furthermore, it is concluded that that the stiffness of the floors influences significantly the strength capacity and the collapse mecha-nism of the numerical model. Thus, a study on the strengthening of the floors was also carried out. The increase of the thickness of the timber floors was the strengthening technique that presented the best seismic performance, in which the reduction of the out-of-plane displacements of the masonry walls is highlighted.