933 resultados para ENDOCRINE DISRUPTION
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"B-279427"--P. 1.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Since the landmark contributions of Homer Smith and co-workers in the 1930s there has been a considerable advance in our knowledge regarding the osmoregulatory strategy of elasmobranch fish. Smith recognised that urea was retained in the body fluids as part of the 'osmoregulatory ballast' of elasmobranch fish so that body fluid osmolality is raised to a level that is iso- or slightly hyper-osmotic to that of the surrounding medium. From studies at that time he also postulated that many marine dwelling elasmobranchs were not capable of adaptation to dilute environments. However, more recent investigations have demonstrated that, at least in some species, this may not be the case. Gradual acclimation of marine dwelling elasmobranchs to varying environmental salinities under laboratory conditions has demonstrated that these fish do have the capacity to acclimate to changes in salinity through independent regulation of Na+, Cl- and urea levels. This suggests that many of the presumed stenohaline marine elasmobranchs could in fact be described as partially euryhaline. The contributions of Thomas Thorson in the 1970s demonstrated the osmoregulatory strategy of a fully euryhaline elasmobranch, the bull shark, Carcharhinus leucas, and more recent investigations have examined the mechanisms behind this strategy in the euryhaline elasmobranch, Dasyatis sabina. Both partially euryhaline and fully euryhaline species utilise the same physiological processes to control urea, Na+ and Cl- levels within the body fluids. The role of the gills, kidney, liver, rectal gland and drinking process is discussed in relation to the endocrine control of urea, Na+ and Cl- levels as elasmobranchs acclimate to different environmental salinities. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
The global incidence of diabetes is increasing at epidemic rates. Estimates suggest there are currently 150 million people with diabetes and this number is expected to double in the next 20 years. Type 2 diabetes accounts for 95% of all cases and is characterized in part by impaired sensitivity to insulin or 'insulin resistance'. Defects in the insulin signalling pathways underpin this resistance. In the current article we discuss the regulation of Insulin Receptor Substrate-1 (IRS-1), a protein that plays a pivotal role in insulin signalling and whose function is impaired in subjects with insulin resistance. Coordination of IRS-1 function is multi-faceted, involving phosphorylation of IRS-1 at multiple serine/threonine residues. This controls many aspects of IRS-1, including its interaction with the insulin receptor and subsequent tyrosine phosphorylation, as well as its subcellular distribution and targeting for degradation by the proteasome. Such tight control ensures appropriate transduction and attenuation of the insulin signal, thereby regulating insulin action in healthy individuals. Emerging evidence indicates that `diabetogenic factors' associated with insulin resistance, such as TNFalpha and elevated circulating fatty acids, impact on insulin signalling at the level of IRS-1 serine/threonine phosphorylation. The expression and/or activity of several kinases, such as IkappaB kinase beta (IKKbeta) and salt-induced kinase 2 (SIK2), and the phosphorylation of IRS-1 at key sites, such as Ser307 and Ser789, are increased in states of insulin resistance. Identifying the pathways by which such factors activate these and other kinases, and de. ning the precise roles of specific serine/threonine phosphorylation events in IRS-1 regulation, represent important goals which may eventually provide a rationale for therapeutic intervention.
Resumo:
One of the great challenges in biology is to understand how particular complex morphological and physiological characters originated in specific evolutionary lineages. In this article, we address the origin of the vertebrate hypothalamic-pituitary-peripheral gland (H-P-PG) endocrine system, a complex network of specialized tissues, ligands and receptors. Analysis of metazoan nucleotide and protein sequences reveals a patchwork pattern of H-P-PG gene conservation between vertebrates and closely related invertebrates (ascidians). This is consistent with a model of how the vertebrate H-P-PG endocrine system could have emerged in relatively few steps by gene family expansion and by regulatory and structural modifications to genes that are present in a chordate ancestor. Some of these changes might have resulted in new connections between metabolic or signaling pathways, such as the bridging of 'synthesis islands' to form an efficient system for steroid hormone synthesis.
Resumo:
Options for skin cancer treatment currently include surgery, radiotherapy, topical chemotherapy, cryosurgery, curettage, and electrodes-sication. Although effective, surgery is costly and unsuitable for certain patients. Radiotherapy can leave a poor cosmetic effect, and current chemotherapy is limited by low cure rates and extended treatment schedules. Here, we describe the preclinical activity of a novel topical chemotherapeutic agent for the treatment of skin cancer, 3-ingenyl angelate (PEP005), a hydrophobic diterpene ester isolated from the plant Euphorbia peplus. Three daily topical applications of 42 nmol (18 mug) of PEP005 cured a series of s.c. mouse tumors (B16 melanoma, LK2 UV-induced squamous cell carcinoma, and Lewis lung carcinoma; it = >14 tumors/group) and human tumors (DO4 melanoma, HeLa cervical carcinoma, and PC3 and DU145 prostate carcinoma; it = >4 tumors/group) previously established (5-10 mm(3)) on C57BL/6 or Fox1(nu) mice. The treatment produced a mild, short-term erythema and eschar formation but, ultimately, resulted in excellent skin cosmesis. The LD90 for PEP005 for a panel of tumor cell lines was 180-220 muM. Electron microscopy showed that treatment with PEP005 both ill vitro (230 tot) and ill vivo (42 nmol) rapidly caused swelling of mitochondria and cell death by primary necrosis. Cr-51 release, uptake of propidium iodide, and staining with the mitochondria dye JC1, revealed that PEP005 (230 muM) treatment of tumor cells ill vitro resulted in a rapid plasma membrane perturbation and loss of mitochondrial membrane potential. PEP005 thus emerges as a new topical anti-skin cancer agent that has a novel mode of action involving plasma membrane and mitochondrial disruption and primary necrosis, ultimately resulting in an excellent cosmetic outcome.
Resumo:
The efficiency of physical separation of inclusion bodies from cell debris is related to cell debris size and inclusion body release and both factors should be taken into account when designing a process. In this work, cell disruption by enzymatic treatment with lysozyme and cellulase, by homogenization, and by homogenization with ammonia pretreatment is discussed. These disruption methods are compared on the basis of inclusion body release, operating costs, and cell debris particle size. The latter was measured with cumulative sedimentation analysis in combination with membrane-associated protein quantification by SDS-PAGE and a spectrophotometric pepticloglycan quantification method. Comparison of the results obtained with these two cell debris quantification methods shows that enzymatic treatment yields cell debris particles with varying chemical composition, while this is not the case with the other disruption methods that were investigated. Furthermore, the experiments show that ammonia pretreatment with homogenization increases inclusion body release compared to homogenization without pretreatment and that this pretreatment may be used to control the cell debris size to some extent. The enzymatic disruption process gives a higher product release than homogenization with or without ammonia pretreatment at lower operating costs, but it also yields a much smaller cell debris size than the other disruption process. This is unfavorable for centrifugal inclusion body purification in this case, where cell debris is the component going to the sediment and the inclusion body is the floating component. Nevertheless, calculations show that centrifugal separation of inclusion bodies from the enzymatically treated cells gives a high inclusion body yield and purity. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Bloom syndrome and ataxia-telangiectasia are autosomal recessive human disorders characterized by immunodeficiency, genome instability and predisposition to develop cancer. Recent data reveal that the products of these two genes, BLM and ATM, interact and function together in recognizing abnormal DNA structures. To investigate the function of these two molecules in DNA damage recognition, we generated double knockouts of ATM(-/-) BLM-/- in the DT40 chicken B-lymphocyte cell line. The double mutant cells were viable and exhibited a variety of characteristics of both ATM(-/-) and BLM-/- cells. There was no evidence for exacerbation of either phenotype; however, the more extreme radiosensitivity seen in ATM(-/-) and the elevated sister chromatid exchange seen in BLM-/- cells were retained in the double mutants. These results suggest that ATM and BLM have largely distinct roles in recognizing different forms of damage in DNA, but are also compatible with partially overlapping functions in recognizing breaks in radiation-damaged DNA.
Resumo:
In this paper, we report data drawn from a larger project on the functioning of the Queensland community service delivery system, particularly that providing services to people with disabilities. Our reasoning for focusing at this level is that, from the service user's perspective, support is derived from the service delivery system, not just individual service providers. Defining the service delivery system as formal services and informal support networks, we undertook interviews and focus groups with service providers in six areas in Queensland: inner urban, outer urban, rural and remote. The period on which we report is one in which considerable reform activity had been undertaken by funding bodies of the Commonwealth and State governments. We report on those factors we identified which promote the integrated functioning of the service delivery system, as well as those factors that disrupt it. We conclude with a brief evaluative analysis of the current status of the system.
Resumo:
The growth performance and endocrine responses of male weaner pigs (3 to 8 weeks of age) was evaluated in two different environments (clean and dirty) and housing (single or groups of 10 pigs/pen) conditions. The dirty environment contained significantly elevated ammonia, carbon dioxide and dust levels compared with the clean environment. Pigs grew faster and consumed more feed in the clean environment and this was associated with reduced plasma cortisol concentrations compared with pigs in the dirty environment. Pigs housed in groups in the dirty environment had increased β-endorphin and decreased IGF-I concentrations compared to group housed pigs in the clean environment. Feed conversion efficiency did not differ due to environment or group housing. Plasma concentration of cortisol, p-endorphin, IGF-I and IGF-II did not differ between single and group housed pigs. Activity of the hypothalamic-pituitary-adrenal (HPA) axis was greater in response to environmental conditions than group housing, and this was associated with reduced growth in weaner pigs. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Obesity and the metabolic syndrome have both reached pandemic proportions. Together they have the potential to impact on the incidence and severity of cardiovascular pathologies, with grave implications for worldwide health care systems. The metabolic syndrome is characterized by visceral obesity, insulin resistance, hypertension, chronic inflammation, and thrombotic disorders contributing to endothelial dysfunction and, subsequently, to accelerated atherosclerosis. Obesity is a key component in development of the metabolic syndrome and it is becoming increasingly clear that a central factor in this is the production by adipose cells of bioactive substances that directly influence insulin sensitivity and vascular injury. In this paper, we review advances in the understanding of biologically active molecules collectively referred to as adipokines and how dysregulated production of these factors in obese states mediates the pathogenesis of obesity associated metabolic syndrome.
Resumo:
There are strong associations between childhood sleep disorders and behavioural, concentration and mood problems. Sleep disorders caused and maintained by behavioural factors (eg, sleep-onset association disorder) are common in young children, and have a significant impact on families. Evaluation should include a medical history, a physical, neurological and developmental examination, a description of any nocturnal events or daytime effects of the child's disturbed sleep, and a good understanding of the family situation and parental management of the child. Management involves recognising the developmental age of the child and the family dynamics, and educating and supporting families in applying behavioural techniques to establish good sleep hygiene. Children with parasomnias (eg, night terrors) also benefit from good sleep hygiene, while those with respiratory or neurological causes of sleep disturbance should be referred for specialist treatment.