972 resultados para Dynamic of nutrients
Resumo:
We report on the spatial distribution of isotopic compositions of the two planktic foraminifera species Globigerina bulloides and Neogloboquadrina pachyderma (dex.), and the faunal assemblages of planktic foraminifera in 91 surface sediment samples along the Chilean continental slope between 23°S and 44°S. Both d13C and d18O data of N. pachyderma (dex.) show little variability in the study area. North of 39°S, the isotopic values of N. pachyderma (dex.) are heavier than those of G. bulloides, whereas south of 39°S, this relation inverses. This is indicative for a change from a well-mixed, deep thermocline caused by coastal upwelling north of 39°S to well-stratified water masses in a non-upwelling environment south of 39°S. In addition, the faunal composition of planktic foraminifera marks this change by transition from an upwelling assemblage north of 39°S to a high-nutrient-non-upwelling assemblage south of 39°S, which is characterized by decreased contributions of upwelling indicators such as G. bulloides, N. pachyderma (sin.), and Globigerinita glutinata. In general, we can conclude that food and light rather than temperature are the primary control of the planktic foraminiferal assemblage between 23°S and 44°S off Chile. Our data point to higher marine productivity at upwelling centers north of 25°S and at 30-33°S. South of 39°S, significant supply of nutrients by fluvial input most likely boosts the productivity.
Resumo:
Faunal analyses of planktonic foraminifera and upper-water temperature reconstructions with the modern analog technique are studied and compared to themagnetic susceptibility and gamma ray logs of ODP Core 999A (western Caribbean) for the past 560 kyr in order to explore changes in paleoceanographic conditions in the western Caribbean Sea. Long-term trends in the percentage abundance of planktonic foraminifera inODP Core 999Asuggest two hydrographic scenarios: before and after 480 ka.High percentage abundances of Neogloboquadrina pachyderma and Globorotalia inflata, low abundances of Globorotalia menardii and Globorotalia truncatulinoides, low diversity, and sea-surface temperatures (SST) under 24 °C are typical characteristics occurring from 480 to 560 ka. These characteristics suggest a "shallow" well-oxygenated upper thermocline and the influx of nutrients by either seasonal upwelling plumes and/or eddy-mediated entrainment. The second scenario occurred after 480 ka, and it is characterized by high and fluctuating percentage abundances of Neogloboquadrina dutertrei, G. truncatulinoides, G. menardii, Globigerinita glutinata, Globigerinella siphonifera, and Globigerinoides ruber; a declining trend in diversity; and large SSTs. These characteristics suggest a steady change from conditions characterized by a "shallow" thermocline and chlorophyll maximum to conditions characterized by a "deep" thermocline (mainly during glacial stages) and by more oligotrophic conditions. The influence of the subtropical North Atlantic on the upper thermocline was apparently larger during glacial stages, thus favoring a deepening of the thermocline, an increase in sea-surface salinity, and a dramatic reduction of nutrients in the Guajira upwelling system. During interglacial stages, the influx of nutrients from the Magdalena River is stronger, thus resulting in a deep chlorophyll maximumand a fresher upper ocean. The eddy entrainment of nutrients is the probable mechanism responsible of transport from the Guajira upwelling and Magdalena River plumes into ODP 999A site.
Resumo:
A detailed assessment of the respective roles of production, export, and subsequent preservation of organic carbon (Corg) in the eastern Mediterranean (EMED) sediments during the formation of sapropels remains elusive. Here we present new micropaleontological results for both surface samples taken at several locations in the EMED and last interglacial sapropel S5 from core LC21 in the southeastern Aegean Sea. A strong exponential anticorrelation between relative abundances of the lower photic zone coccolithophore Florisphaera profundain the surface sediments and modern concentrations of chlorophyll a (Chl-a) at the sea surface suggests thatF. profunda percentages can be used to track past productivity changes in the EMED. Prior to S5 deposition, an abrupt and large increase of F. profunda percentages in LC21 coincided (within the multidecadal resolution of the records) with the marked freshening of EMED surface waters. This suggests a strong coupling between freshwater-bound surface to intermediate water (density) stratification and enhanced upward advection of nutrients to the base of the photic zone, fuelling a productive deep chlorophyll maximum (DCM) underneath a nutrient-starved surface layer. Our findings imply that (at least) at the onset of sapropel formation physical and biogeochemical processes likely operated in tandem, enabling high Corg accumulation at the seafloor.