946 resultados para Drosophila Spermatogenesis
Resumo:
Snf, encoded by sans fille, is the Drosophila homolog of mammalian U1A and U2B′′ and is an integral component of U1 and U2 small nuclear ribonucleoprotein particles (snRNPs). Surprisingly, changes in the level of this housekeeping protein can specifically affect autoregulatory activity of the RNA-binding protein Sex-lethal (Sxl) in an action that we infer must be physically separate from Snf’s functioning within snRNPs. Sxl is a master switch gene that controls its own pre-mRNA splicing as well as splicing for subordinate switch genes that regulate sex determination and dosage compensation. Exploiting an unusual new set of mutant Sxl alleles in an in vivo assay, we show that Snf is rate-limiting for Sxl autoregulation when Sxl levels are low. In such situations, increasing either maternal or zygotic snf+ dose enhances the positive autoregulatory activity of Sxl for Sxl somatic pre-mRNA splicing without affecting Sxl activities toward its other RNA targets. In contrast, increasing the dose of genes encoding either the integral U1 snRNP protein U1-70k, or the integral U2 snRNP protein SF3a60, has no effect. Increased snf+ enhances Sxl autoregulation even when U1-70k and SF3a60 are reduced by mutation to levels that, in the case of SF3a60, demonstrably interfere with Sxl autoregulation. The observation that increased snf+ does not suppress other phenotypes associated with mutations that reduce U1-70k or SF3a60 is additional evidence that snf+ dose effects are not caused by increased snRNP levels. Mammalian U1A protein, like Snf, has a snRNP-independent function.
Resumo:
In Drosophila, the chromosomal region 75C1–2 contains at least three genes, reaper (rpr), head involution defective (hid), and grim, that have important functions in the activation of programmed cell death. To better understand how cells are killed by these genes, we have utilized a well defined set of embryonic central nervous system midline cells that normally exhibit a specific pattern of glial cell death. In this study we show that both rpr and hid are expressed in dying midline cells and that the normal pattern of midline cell death requires the function of multiple genes in the 75C1–2 interval. We also utilized the P[UAS]/P[Gal4] system to target expression of rpr and hid to midline cells. Targeted expression of rpr or hid alone was not sufficient to induce ectopic midline cell death. However, expression of both rpr and hid together rapidly induced ectopic midline cell death that resulted in axon scaffold defects characteristic of mutants with abnormal midline cell development. Midline-targeted expression of the baculovirus p35 protein, a caspase inhibitor, blocked both normal and ectopic rpr- and hid-induced cell death. Taken together, our results suggest that rpr and hid are expressed together and cooperate to induce programmed cell death during development of the central nervous system midline.
Resumo:
Null mutations at the misato locus of Drosophila melanogaster are associated with irregular chromosomal segregation at cell division. The consequences for morphogenesis are that mutant larvae are almost devoid of imaginal disk tissue, have a reduction in brain size, and die before the late third-instar larval stage. To analyze these findings, we isolated cDNAs in and around the misato locus, mapped the breakpoints of chromosomal deficiencies, determined which transcript corresponded to the misato gene, rescued the cell division defects in transgenic organisms, and sequenced the genomic DNA. Database searches revealed that misato codes for a novel protein, the N-terminal half of which contains a mixture of peptide motifs found in α-, β-, and γ-tubulins, as well as a motif related to part of the myosin heavy chain proteins. The sequence characteristics of misato indicate either that it arose from an ancestral tubulin-like gene, different parts of which underwent convergent evolution to resemble motifs in the conventional tubulins, or that it arose by the capture of motifs from different tubulin genes. The Saccharomyces cerevisiae genome lacks a true homolog of the misato gene, and this finding highlights the emerging problem of assigning functional attributes to orphan genes that occur only in some evolutionary lineages.
Resumo:
Insights into the function of a gene can be gained in multiple ways, including loss-of-function phenotype, sequence similarity, expression pattern, and by the consequences of its misexpression. Analysis of the phenotypes produced by expression of a gene at an abnormal time, place, or level may provide clues to a gene’s function when other approaches are not illuminating. Here we report that an eye-specific, enhancer–promoter present in the P element expression vector pGMR is able to drive high level expression in the eye of genes near the site of P element insertion. Cell fate determination, differentiation, proliferation, and death are essential for normal eye development. Thus the ability to carry out eye-specific misexpression of a significant fraction of genes in the genome, given the dispensability of the eye for viability and fertility of the adult, should provide a powerful approach for identifying regulators of these processes. To test this idea we carried out two overexpression screens for genes that function to regulate cell death. We screened for insertion-dependent dominant phenotypes in a wild-type background, and for dominant modifiers of a reaper overexpression-induced small eye phenotype. Multiple chromosomal loci were identified, including an insertion 5′ to hid, a potent inducer of apoptosis, and insertions 5′ to DIAP1, a cell death suppressor. To facilitate the cloning of genes near the P element insertion new misexpression vectors were created. A screen with one of these vectors identified eagle as a suppressor of a rough eye phenotype associated with overexpression of an activated Ras1 gene.
Resumo:
Specification of pattern is fundamental to the development of a multicellular organism. The Malpighian (renal) tubule of Drosophila melanogaster is a simple epithelium that proliferates under the direction of a single tip cell into three morphologically distinct domains. However, systematic analysis of a panel of over 700 P{GAL4} enhancer trap lines reveals unexpected richness for such an apparently simple tissue. Using numerical analysis, it was possible formally to reconcile apparently similar or complementary expression domains and thus to define at least five genetically defined domains and multiple cell types. Remarkably, the positions of domain boundaries and the numbers of both principal and secondary (“stellate”) cell types within each domain are reproducible to near single-cell precision between individual animals. Domains of physiological function were also mapped using transport or expression assays. Invariably, they respect the boundaries defined by enhancer activity. These genetic domains can also be visualized in vivo, both in transgenic and wild-type flies, providing an “identified cell” system for epithelial physiology. Building upon recent advances in Drosophila Malpighian tubule physiology, the present study confirms this tissue as a singular model for integrative physiology.
Resumo:
The achaete-scute genes encode essential transcription factors in normal Drosophila and vertebrate nervous system development. Human achaete-scute homolog-1 (hASH1) is constitutively expressed in a human lung cancer with neuroendocrine (NE) features, small cell lung cancer (SCLC), and is essential for development of the normal pulmonary NE cells that most resemble this neoplasm. Mechanisms regulating achaete-scute homolog expression outside of Drosophila are presently unclear, either in the context of the developing nervous system or in normal or neoplastic cells with NE features. We now provide evidence that the protein hairy-enhancer-of-split-1 (HES-1) acts in a similar manner as its Drosophila homolog, hairy, to transcriptionally repress achaete-scute expression. HES-1 protein is detected at abundant levels in most non-NE human lung cancer cell lines which lack hASH1 but is virtually absent in hASH1-expressing lung cancer cells. Moreover, induction of HES-1 in a SCLC cell line down-regulates endogenous hASH1 gene expression. The repressive effect of HES-1 is directly mediated by binding of the protein to a class C site in the hASH1 promoter. Thus, a key part of the process that determines neural fate in Drosophila is conserved in human lung cancer cells. Furthermore, modulation of this pathway may underlie the constitutive hASH1 expression seen in NE tumors such as SCLC, the most virulent human lung cancer.
Resumo:
Focal adhesion kinase (FAK) is a highly conserved, cytoplasmic tyrosine kinase that has been implicated in promoting cell migration and transmission of antiapoptotic signals in vertebrate cells. In cultured cells, integrin engagement with the extracellular matrix promotes the recruitment of FAK to focal contacts and increases in its phosphotyrosine content and kinase activity, suggesting FAK is an intracellular mediator of integrin signaling. We have identified a Drosophila FAK homolog, DFak56, that is 33% identical to vertebrate FAK, with the highest degree of homology in domains critical for FAK function, including the kinase and focal adhesion targeting domains, and several protein–protein interaction motifs. Furthermore, when expressed in NIH 3T3 cells, DFak56 both localizes to focal contacts and displays the characteristic elevation of phosphotyrosine content in response to plating the cells on fibronectin. During embryogenesis, DFak56 is broadly expressed, and it becomes elevated in the gut and central nervous system at later stages. Consistent with a role in cell migration, we also observe that DFak56 is abundant in the border cells of developing egg chambers before the onset of, and during, their migration.
Resumo:
In this study, we present evidence that the Dorsal activator interacts with limiting amounts of the TFIID complex in the Drosophila embryo. In vitro transcription reactions and protein binding assays implicate the TAFII110 and TAFII60 subunits of the TFIID complex in contributing to Dorsal-mediated activation. Mutations in TAFII110 and TAFII60 result in altered patterns of snail and twist transcription in embryos derived from dl/+ females. These results suggest that TAFIIs contribute to the activation of transcription in vivo and support the hypothesis that subunits of TFIID may serve as targets of enhancer binding proteins.
Resumo:
The importance of the amyloid precursor protein (APP) in the pathogenesis of Alzheimer’s disease (AD) became apparent through the identification of distinct mutations in the APP gene, causing early onset familial AD with the accumulation of a 4-kDa peptide fragment (βA4) in amyloid plaques and vascular deposits. However, the physiological role of APP is still unclear. In this work, Drosophila melanogaster is used as a model system to analyze the function of APP by expressing wild-type and various mutant forms of human APP in fly tissue culture cells as well as in transgenic fly lines. After expression of full-length APP forms, secretion of APP but not of βA4 was observed in both systems. By using SPA4CT, a short APP form in which the signal peptide was fused directly to the βA4 region, transmembrane domain, and cytoplasmic tail, we observed βA4 release in flies and fly-tissue culture cells. Consequently, we showed a γ-secretase activity in flies. Interestingly, transgenic flies expressing full-length forms of APP have a blistered-wing phenotype. As the wing is composed of interacting dorsal and ventral epithelial cell layers, this phenotype suggests that human APP expression interferes with cell adhesion/signaling pathways in Drosophila, independently of βA4 generation.
Resumo:
If behavioral isolation between species can evolve as a consequence of sexual selection within a species, then traits that are both sexually selected and used as a criterion of species recognition by females should be identifiable. The broad male head of the Hawaiian picture-winged fly Drosophila heteroneura is a novel sexual dimorphism that may be sexually selected and involved in behavioral isolation from D. silvestris. We found that males with broad heads are more successful in sexual selection, both through female mate choice and through aggressive interactions. However, female D. heteroneura do not discriminate against hybrids on the basis of their head width. Thus, this novel trait is sexually selected but is not a major contributor to species recognition. Our methods should be applicable to other species in which behavioral isolation is a factor.
Resumo:
The activity of Ras family proteins is modulated in vivo by the function of GTPase activating proteins, which increase their intrinsic rate of GTP hydrolysis. We have isolated cDNAs encoding a GAP for the Drosophila Rap1 GTPase. Drosophila Rapgap1 encodes an 850-amino acid protein with a central region that displays substantial sequence similarity to human RapGAP. This domain, when expressed in Escherichia coli, potently stimulates Rap1 GTPase activity in vitro. Unlike Rap1, which is ubiquitously expressed, Rapgap1 expression is highly restricted. Rapgap1 is expressed at high levels in the developing photoreceptor cells and in the optic lobe. Rapgap1 mRNA is also localized in the pole plasm in an oskar-dependent manner. Although mutations that completely abolish Rapgap1 function display no obvious phenotypic abnormalities, overexpression of Rapgap1 induces a rough eye phenotype that is exacerbated by reducing Rap1 gene dosage. Thus, Rapgap1 can function as a negative regulator of Rap1-mediated signaling in vivo.
Resumo:
The Drosophila fat facets gene encodes a deubiquitinating enzyme that regulates a cell communication pathway essential very early in eye development, prior to facet assembly, to limit the number of photoreceptor cells in each facet of the compound eye to eight. The Fat facets protein facilitates the production of a signal in cells outside the developing facets that inhibits neural development of particular facet precursor cells. Novel gain-of-function mutations in the Drosophila Rap1 and Ras1 genes are described herein that interact genetically with fat facets mutations. Analysis of these genetic interactions reveals that Fat facets has an additional function later in eye development involving Rap1 and Ras1 proteins. Moreover, the results suggest that undifferentiated cells outside the facet continue to influence facet assembly later in eye development.
Resumo:
The intracellular part of the Rel signal transduction pathway in Drosophila is encoded by Toll, tube, pelle, dorsal, and cactus, and it functions to form the dorsal–ventral axis in the Drosophila embryo. Upon activation of the transmembrane receptor Toll, Dorsal dissociates from its cytoplasmic inhibitor Cactus and enters the nucleus. Tube and Pelle are required to relay the signal from Toll to the Dorsal–Cactus complex. In a yeast two-hybrid assay, we found that both Tube and Pelle interact with Dorsal. We confirmed these interactions in an in vitro binding assay. Tube interacts with Dorsal via its C-terminal domain, whereas full-length Pelle is required for Dorsal binding. Tube and Pelle bind Dorsal in the N-terminal domain 1 of the Dorsal Rel homology region rather than at the Cactus binding site. Domain 1 has been found to be necessary for Dorsal nuclear targeting. Genetic experiments indicate that Tube–Dorsal interaction is necessary for normal signal transduction. We propose a model in which Tube, Pelle, Cactus, and Dorsal form a multimeric complex that represents an essential aspect of signal transduction.
Resumo:
Insects respond to microbial infection by the rapid and transient expression of several genes encoding potent antimicrobial peptides. Herein we demonstrate that this antimicrobial response of Drosophila is not aspecific but can discriminate between various classes of microorganisms. We first observe that the genes encoding antibacterial and antifungal peptides are differentially expressed after injection of distinct microorganisms. More strikingly, Drosophila that are naturally infected by entomopathogenic fungi exhibit an adapted response by producing only peptides with antifungal activities. This response is mediated through the selective activation of the Toll pathway.
Resumo:
Visual transduction in Drosophila is a G protein-coupled phospholipase C-mediated process that leads to depolarization via activation of the transient receptor potential (TRP) calcium channel. Inactivation-no-afterpotential D (INAD) is an adaptor protein containing PDZ domains known to interact with TRP. Immunoprecipitation studies indicate that INAD also binds to eye-specific protein kinase C and the phospholipase C, no-receptor-potential A (NORPA). By overlay assay and site-directed mutagenesis we have defined the essential elements of the NORPA–INAD association and identified three critical residues in the C-terminal tail of NORPA that are required for the interaction. These residues, Phe-Cys-Ala, constitute a novel binding motif distinct from the sequences recognized by the PDZ domain in INAD. To evaluate the functional significance of the INAD–NORPA association in vivo, we generated transgenic flies expressing a modified NORPA, NORPAC1094S, that lacks the INAD interaction. The transgenic animals display a unique electroretinogram phenotype characterized by slow activation and prolonged deactivation. Double mutant analysis suggests a possible inaccessibility of eye-specific protein kinase C to NORPAC1094S, undermining the observed defective deactivation, and that delayed activation may similarly result from NORPAC1094S being unable to localize in close proximity to the TRP channel. We conclude that INAD acts as a scaffold protein that facilitates NORPA–TRP interactions required for gating of the TRP channel in photoreceptor cells.