969 resultados para Division of cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pathogens of the reproductive system in the male can penetrate and establish by ascending route, from to the prepuce to the urethra, accessory glands, epididymis and testicles. The aim of this paper is determine the distribution and number of cells involved in the immune response in prepuce and pelvic urethra of rams, without apparent clinical alterations in testicle, epididymis and prepuce. The distribution of some of the cells involved in the immune response at the level of the prepuce and the pelvic urethra was quantified in four one-year-old rams seronegative for B. ovis and A. seminis and without apparent lesions in the testicles, the epididymis, and the prepuce. At the moment of slaughter, samples were taken from the preputial fornix and the pelvic urethra and placed in 10% formalin and under freezing conditions. CD4, CD8, WC1, CD45RO, CD14 and CD1b cells were demonstrated by immunohistochemistry, and immunoglobulin-containing cells (ICC) of the IgA, IgG and IgM classes were demonstrated by immunofluorescence. The labeled cells present in the mucosa of both organs were counted with an image analyzer. The total number of cells was compared between both tissues and differentially between the epithelium and the connective tissue of the mucosa. Significant differences were found in the total number of CD4, CD45RO, and WC1 lymphocytes, in CD14 macrophages, and CD1b dendritic cells, with mean values being greater in the fornix than in the urethra (p<0.05) in all cases. Only dendritic cells were found in the prepuce. No differences were found in the number of CD8 lymphocytes between both organs. The ratio between each cell type in the connective and the intraepithelial tissues and between organs was 10/1 for CD4 in the fornix (p<0.05), against 7/1 in the urethra (p<0.05), while CD8 had a 1/1 distribution in both mucosae. The WC1 ratio was 5/1 in both mucosae (p<0.05). CD45RO labeling was 19/1 in the prepuce (p<0.05) and 1/1 in the urethra. IgA-containing cells did not show differences in the total number of cells in both tissues. In the urethra, no IgG-containing cells were observed and IgM-containing cells were scarce; in contrast, both cell types were present in the prepuce, in amounts greater than in the urethra (p<0.05). IgA-, IgG-, and IgM-containing cells were located in both organs in the mucosal connective tissue. The presence of antigen-presenting cells, macrophages, and dendritic cells, as well as of lymphocytes CD4, CD8 TCR γδ (WC1), IgA-, IgG and IgM positive cells, and CD45RO cells suggests that both mucosae may behave as inductive and effector sites for the mucosal immune response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSC) are increasingly being proposed as a therapeutic option for treatment of a variety of different diseases in human and veterinary medicine. Stem cells have been isolated from feline bone marrow, however, very few data exist about the morphology of these cells and no data were found about the morphometry of feline bone marrow-derived MSCs (BM-MSCs). The objectives of this study were the isolation, growth evaluation, differentiation potential and characterization of feline BM-MSCs by their morphological and morphometric characteristics. in vitro differentiation assays were conducted to confirm the multipotency of feline MSC, as assessed by their ability to differentiate into three cell lineages (osteoblasts, chondrocytes, and adipocytes). To evaluate morphological and morphometric characteristics the cells are maintained in culture. Cells were observed with light microscope, with association of dyes, and they were measured at 24, 48, 72 and 120h of culture (P1 and P3). The non-parametric ANOVA test for independent samples was performed and the means were compared by Tukey's test. On average, the number of mononuclear cells obtained was 12.29 (±6.05x10(6)) cells/mL of bone marrow. Morphologically, BM-MSCs were long and fusiforms, and squamous with abundant cytoplasm. In the morphometric study of the cells, it was observed a significant increase in average length of cells during the first passage. The cell lengths were 106.97±38.16µm and 177.91±71.61µm, respectively, at first and third passages (24 h). The cell widths were 30.79±16.75 µm and 40.18±20.46µm, respectively, at first and third passages (24 h).The nucleus length of the feline BM-MSCs at P1 increased from 16.28µm (24h) to 21.29µm (120h). However, at P3, the nucleus length was 26.35µm (24h) and 25.22µm (120h). This information could be important for future application and use of feline BM-MSCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ten-celled biseriate glandular trichome of Stevia rebaudiana (Bert.) Bert.-Asteraceae, found on both leaf surfaces, originates from a single protruding, protodermal cell undergoing an anticlinal division. A subsequent series of periclinal divisions, occurring in acropetal sequence, leads to the formation of the trichome, composed of five pairs of cells, one pair of basal cells, another of stalk cells and three pairs of secretory head cells. Developing, still two-celled glandular trichomes already occur on leaf primordia of the second pair (these primordia measuring, in some cases, ca. 0.30 mm in length), and most of the glandular trichomes are at the mature phase on very young, expanding leaves, for example on those of the sixth pair. The secretory material released by the head cells is stored in the trichome cavity (subcuticular space). Basic histochemical tests reveal that such material is lipophilic (mainly) and hydrophilic in nature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immunohistochemistry was used to evaluate the effects of neonatal handling and aversive stimulation during the first 10 days of life on the number of corticotrophs in the anterior lobe of the pituitary of 11-day-old male Wistar rats. Since adult rats handled during infancy respond with reduced corticosterone secretion in response to stressors and with less behavior inhibition in novel environments, we assumed that neonatal stimulation could affect pituitary morphology during this critical period of cell differentiation. Three groups of animals were studied: intact (no manipulation, N = 5), handled (N = 5) and stimulated (submitted to 3 different aversive stimuli, N = 5). The percentage of ACTH-immunoreactive cells in the anterior lobe of the pituitary (number of ACTH-stained cells divided by total number of cells) was determined by examining three slices per pituitary in which a minimum of 200 cells were counted by two independent researchers. Although animals during the neonatal period are less reactive to stress-like stimulation in terms of ACTH and corticosterone secretion, results showed that the relative number of ACTH-stained cells of neonatal handled (0.25 ± 0.01) and aversive stimulated (0.29 ± 0.03) rats was not significantly different from intact (0.30 ± 0.03) animals. Neonatal stimulation may have a differential effect on the various subpopulations of corticotroph cells in the anterior pituitary

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A close correlation between vitamin D receptor (VDR) abundance and cell proliferation rate has been shown in NIH-3T3 fibroblasts, MCF-7 breast cancer and in HL-60 myeloblastic cells. We have now determined if this association occurs in other leukemic cell lines, U937 and K562, and if VDR content is related to c-myc expression, which is also linked to cell growth state. Upon phorbol myristate acetate (PMA) treatment, cells from the three lineages (HL-60, U937 and K562) differentiated and expressed specific surface antigens. All cell lines analyzed were growth inhibited by PMA and the doubling time was increased, mainly due to an increased fraction of cells in the G0/G1 phase, as determined by flow cytometry measurements of incorporated bromodeoxyuridine and cell DNA content. C-myc mRNA expression was down-regulated and closely correlated to cell growth arrest. However, VDR expression in leukemic cell lines, as determined by immunofluorescence and Northern blot assays, was not consistently changed upon inhibition of cell proliferation since VDR levels were down-regulated only in HL-60 cells. Our data suggest that VDR expression cannot be explained simply as a reflection of the leukemic cell growth state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within the complex cellular arrangement found in the bone marrow stroma there exists a subset of nonhematopoietic cells referred to as mesenchymal progenitor cells (MPC). These cells can be expanded ex vivo and induced, either in vitro or in vivo, to terminally differentiate into at least seven types of cells: osteocytes, chondrocytes, adipocytes, tenocytes, myotubes, astrocytes and hematopoietic-supporting stroma. This broad multipotentiality, the feasibility to obtain MPC from bone marrow, cord and peripheral blood and their transplantability support the impact that the use of MPC will have in clinical settings. However, a number of fundamental questions about the cellular and molecular biology of MPC still need to be resolved before these cells can be used for safe and effective cell and gene therapies intended to replace, repair or enhance the physiological function of the mesenchymal and/or hematopoietic systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In most of cells bradykinin (BK) induces intracellular calcium mobilization. In pancreatic beta cells intracellular calcium is a major signal for insulin secretion. In these cells, glucose metabolism yields intracellular ATP which blocks membrane potassium channels. The membrane depolarizes, voltage-dependent Ca2+ channels are activated and the intracellular calcium load allows insulin secretion. Repolarization occurs due to activation of the Ca2+-dependent K+ channel. The insulin secretion depends on the integrity of this oscillatory process (bursts). Therefore, we decided to determine whether BK (100 nM) induces bursts in the presence of a non-stimulatory glucose concentration (5.6 mM). During continuous membrane voltage recording, our results showed that bursts were obtained with 11 mM glucose, blocked with 5.6 mM glucose and recovered with 5.6 mM glucose plus 100 nM BK. Thus, the stimulatory process obtained in the presence of BK and of a non-stimulatory concentration of glucose in the present study suggests that BK may facilitate the action of glucose on beta cell secretion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Astroglial cells derived from lateral and medial midbrain sectors differ in their abilities to support neuritic growth of midbrain neurons in cocultures. These different properties of the two types of cells may be related to the composition of their extracellular matrix. We have studied the synthesis and secretion of sulfated glycosaminoglycans (GAGs) by the two cell types under control conditions and ß-D-xyloside-stimulated conditions, that stimulate the ability to synthesize and release GAGs. We have confirmed that both cell types synthesize and secrete heparan sulfate and chondroitin sulfate. Only slight differences were observed between the proportions of the two GAGs produced by the two types of cells after a 24-h labeling period. However, a marked difference was observed between the GAGs produced by the astroglial cells derived from lateral and medial midbrain sectors. The medial cells, which contain derivatives of the tectal and tegmental midline radial glia, synthesized and secreted ~2.3 times more chondroitin sulfate than lateral cells. The synthesis of heparan sulfate was only slightly modified by the addition of ß-D-xyloside. Overall, these results indicate that astroglial cells derived from the two midbrain sectors have marked differences in their capacity to synthesize chondroitin sulfate. Under in vivo conditions or a long period of in vitro culture, they may produce extracellular matrix at concentrations which may differentially affect neuritic growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The analysis of chromosomal abnormalities is important for the study of hematological neoplastic disorders since it facilitates classification of the disease. The ability to perform chromosome analysis of cryopreserved malignant marrow or peripheral blast cells is important for retrospective studies. In the present study, we compared the karyotype of fresh bone marrow cells (20 metaphases) to that of cells stored with a simplified cryopreservation method, evaluated the effect of the use of granulocyte-macrophage colony-stimulating factor (GM-CSF) as an in vitro mitotic index stimulator, and compared the cell viability and chromosome morphology of fresh and cryopreserved cells whenever possible (sufficient metaphases for analysis). Twenty-five bone marrow samples from 24 patients with hematological disorders such as acute myeloid leukemia, acute lymphoblastic leukemia, myelodysplastic syndrome, chronic myeloid leukemia, megaloblastic anemia and lymphoma (8, 3, 3, 8, 1, and 1 patients, respectively) were selected at diagnosis, at relapse or during routine follow-up and one sample was obtained from a bone marrow donor after informed consent. Average cell viability before and after freezing was 98.8 and 78.5%, respectively (P < 0.05). Cytogenetic analysis was successful in 76% of fresh cell cultures, as opposed to 52% of cryopreserved samples (P < 0.05). GM-CSF had no proliferative effect before or after freezing. The morphological aspects of the chromosomes in fresh and cryopreserved cells were subjectively the same. The present study shows that cytogenetic analysis of cryopreserved bone marrow cells can be a reliable alternative when fresh cell analysis cannot be done, notwithstanding the reduced viability and lower percent of successful analysis that are associated with freezing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cells usually lose adhesion and increase proliferation and migration during malignant transformation. Here, we studied how proliferation can affect the other two characteristics, which ultimately lead to invasion and metastasis. We determined the expression of ß1 integrins, as well as adhesion and migration towards laminin-1, fibronectin, collagens type I and type IV presented by LISP-1 colorectal cancer cells exposed to 2.5% dimethyl sulfoxide (DMSO), an agent capable of decreasing proliferation in this poorly differentiated colorectal cell line. Untreated cells (control), as shown by flow cytometry and monoclonal antibodies, expressed alpha2 (63.8 ± 11.3% positive cells), alpha3 (93.3 ± 7.0%), alpha5 (50.4 ± 12.0%) and alpha6 (34.1 ± 4.9%) integrins but not alpha1, alpha4, alphav or ß4. Cells adhered well to laminin-1 (73.4 ± 6.0%) and fibronectin (40.0 ± 2.0%) substrates but very little to collagens. By using blocking monoclonal antibodies, we showed that alpha2, alpha3 and alpha6 mediated laminin-1 adhesion, but neither alpha3 nor alpha5 contributed to fibronectin adherence. DMSO arrested cells at G0/G1 (control: 55.0 ± 2.4% vs DMSO: 70.7 ± 2.5%) while simultaneously reducing alpha5 (24.2 ± 19%) and alpha6 (14.3 ± 10.8%) expression as well as c-myc mRNA (7-fold), the latter shown by Northern blotting. Although the adhesion rate did not change after exposure to DMSO, alpha3 and alpha5 played a major role in laminin-1 and fibronectin adhesion, respectively. Migration towards laminin-1, which was clearly increased upon exposure to DMSO (control: 6 ± 2 cells vs DMSO: 64 ± 6 cells), was blocked by an antibody against alpha6. We conclude that the effects of DMSO on LISP-1 proliferation were accompanied by concurrent changes in the expression and function of integrins, consequently modulating adhesion/migration, and revealing a complex interplay between function/expression and the proliferative state of cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gamma-irradiation (gamma-IR) is extensively used in the treatment of hormone-resistant prostate carcinoma. The objective of the present study was to investigate the effects of 60Co gamma-IR on the growth, cell cycle arrest and cell death of the human prostate cancer cell line DU 145. The viability of DU 145 cells was measured by the Trypan blue exclusion assay and the 3(4,5-dimethylthiazol-2-yl)-2,5,diphenyltetrazolium bromide test. Bromodeoxyuridine incorporation was used for the determination of cell proliferation. Cell cycle arrest and cell death were analyzed by flow cytometry. Superoxide dismutase (SOD), specifically CuZnSOD and MnSOD protein expression, after 10 Gy gamma-IR, was determined by Western immunoblotting analysis. gamma-IR treatment had a significant (P < 0.001) antiproliferative and cytotoxic effect on DU 145 cells. Both effects were time and dose dependent. Also, the dose of gamma-IR which inhibited DNA synthesis and cell proliferation by 50% was 9.7 Gy. Furthermore, gamma-IR induced cell cycle arrest in the G2/M phase and the percentage of cells in the G2/M phase was increased from 15% (control) to 49% (IR cells), with a nonsignificant induction of apoptosis. Treatment with 10 Gy gamma-IR for 24, 48, and 72 h stimulated CuZnSOD and MnSOD protein expression in a time-dependent manner, approximately by 3- to 3.5-fold. These data suggest that CuZnSOD and MnSOD enzymes may play an important role in the gamma-IR-induced changes in DU 145 cell growth, cell cycle arrest and cell death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A correlation between cancer and prothrombotic states has long been described. More recently, a number of studies have focused on the procoagulant mechanisms exhibited by tumor cells. In the present study, we dissected the molecular mechanisms responsible for the procoagulant activity of MV3, a highly aggressive human melanoma cell line. It was observed that tumor cells strongly accelerate plasma coagulation as a result of: i) expression of the blood clotting initiator protein, a tissue factor, as shown by flow cytometry and functional assays (factor Xa formation in the presence of cells and factor VIIa), and ii) direct activation of prothrombin to thrombin by cells, as evidenced by hydrolysis of the synthetic substrate, S-2238, and the natural substrate, fibrinogen. This ability was highly potentiated by the addition of exogenous factor Va, which functions as a co-factor for the enzyme factor Xa. In contrast, prothrombin activation was not observed when cells were previously incubated with DEGR-factor Xa, an inactive derivative of the enzyme. Moreover, a monoclonal antibody against bovine factor Xa reduced the prothrombin-converting activity of tumor cells. In conclusion, the data strongly suggest that MV3 cells recruit factor Xa from the culture medium, triggering an uncommon procoagulant mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Period2 is a core circadian gene, which not only maintains the circadian rhythm of cells but also regulates some organic functions. We investigated the effects of mPeriod2 (mPer2) expression on radiosensitivity in normal mouse cells exposed to 60Co-γ-rays. NIH 3T3 cells were treated with 12-O-tetradecanoylphorbol-13-acetate (TPA) to induce endogenous mPer2 expression or transfected with pcDNA3.1(+)-mPer2 and irradiated with 60Co-γ-rays, and then analyzed by several methods such as flow cytometry, colony formation assay, RT-PCR, and immunohistochemistry. Flow cytometry and colony formation assay revealed that irradiated NIH 3T3 cells expressing high levels of mPer2 showed a lower death rate (TPA: 24 h 4.3% vs 12 h 6.8% and control 9.4%; transfection: pcDNA3.1-mPer2 3.7% vs pcDNA3.1 11.3% and control 8.2%), more proliferation and clonogenic survival (TPA: 121.7 ± 6.51 vs 66.0 ± 3.51 and 67.7 ± 7.37; transfection: 121.7 ± 6.50 vs 65.3 ± 3.51 and 69.0 ± 4.58) both when treated with TPA and transfected with mPer2. RT-PCR analysis showed an increased expression of bax, bcl-2, p53, c-myc, mre11, and nbs1, and an increased proportionality of bcl-2/bax in the irradiated cells at peak mPer2 expression compared with cells at trough mPer2 expression and control cells. However, no significant difference in rad50 expression was observed among the three groups of cells. Immunohistochemistry also showed increased protein levels of P53, BAX and proliferating cell nuclear antigen in irradiated cells with peak mPer2 levels. Thus, high expression of the circadian gene mPer2 may reduce the radiosensitivity of NIH 3T3 cells. For this effect, mPer2 may directly or indirectly regulate the expressions of cell proliferation- and apoptosis-related genes and DNA repair-related genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissue engineering is a technique by which a live tissue can be re-constructed and one of its main goals is to associate cells with biomaterials. Electrospinning is a technique that facilitates the production of nanofibers and is commonly used to develop fibrous scaffolds to be used in tissue engineering. In the present study, a different approach for cell incorporation into fibrous scaffolds was tested. Mesenchymal stem cells were extracted from the wall of the umbilical cord and mononuclear cells from umbilical cord blood. Cells were re-suspended in a 10% polyvinyl alcohol solution and subjected to electrospinning for 30 min under a voltage of 21 kV. Cell viability was assessed before and after the procedure by exclusion of dead cells using trypan blue staining. Fiber diameter was observed by scanning electron microscopy and the presence of cells within the scaffolds was analyzed by confocal laser scanning microscopy. After electrospinning, the viability of mesenchymal stem cells was reduced from 88 to 19.6% and the viability of mononuclear cells from 99 to 8.38%. The loss of viability was possibly due to the high viscosity of the polymer solution, which reduced the access to nutrients associated with electric and mechanical stress during electrospinning. These results suggest that the incorporation of cells during fiber formation by electrospinning is a viable process that needs more investigation in order to find ways to protect cells from damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Support structures for dermal regeneration are composed of biodegradable and bioresorbable polymers, animal skin or tendons, or are bacteria products. The use of such materials is controversial due to their low efficiency. An important area within tissue engineering is the application of multipotent mesenchymal stromal cells (MSCs) to reparative surgery. The combined use of biodegradable membranes with stem cell therapy may lead to promising results for patients undergoing unsuccessful conventional treatments. Thus, the aim of this study was to test the efficacy of using membranes composed of anionic collagen with or without the addition of hyaluronic acid (HA) as a substrate for adhesion and in vitro differentiation of bone marrow-derived canine MSCs. The benefit of basic fibroblast growth factor (bFGF) on the differentiation of cells in culture was also tested. MSCs were collected from dog bone marrow, isolated and grown on collagen scaffolds with or without HA. Cell viability, proliferation rate, and cellular toxicity were analyzed after 7 days. The cultured cells showed uniform growth and morphological characteristics of undifferentiated MSCs, which demonstrated that MSCs successfully adapted to the culture conditions established by collagen scaffolds with or without HA. This demonstrates that such scaffolds are promising for applications to tissue regeneration. bFGF significantly increased the proliferative rate of MSCs by 63% when compared to groups without the addition of the growth factor. However, the addition of bFGF becomes limiting, since it has an inhibitory effect at high concentrations in culture medium.