979 resultados para Distributed Mobility Context
Resumo:
Harnessing idle PCs CPU cycles, storage space and other resources of networked computers to collaborative are mainly fixated on for all major grid computing research projects. Most of the university computers labs are occupied with the high puissant desktop PC nowadays. It is plausible to notice that most of the time machines are lying idle or wasting their computing power without utilizing in felicitous ways. However, for intricate quandaries and for analyzing astronomically immense amounts of data, sizably voluminous computational resources are required. For such quandaries, one may run the analysis algorithms in very puissant and expensive computers, which reduces the number of users that can afford such data analysis tasks. Instead of utilizing single expensive machines, distributed computing systems, offers the possibility of utilizing a set of much less expensive machines to do the same task. BOINC and Condor projects have been prosperously utilized for solving authentic scientific research works around the world at a low cost. In this work the main goal is to explore both distributed computing to implement, Condor and BOINC, and utilize their potency to harness the ideal PCs resources for the academic researchers to utilize in their research work. In this thesis, Data mining tasks have been performed in implementation of several machine learning algorithms on the distributed computing environment.
Resumo:
Third stage larvae (L3) from Angiostrongylus costaricensis were incubated in water at room temperature and at 5 ° C and their mobility was assessed daily for 17 days. Viability was associated with the mobility and position of the L3, and it was confirmed by inoculation per os in albino mice. The number of actively moving L3 sharply decreased within 3 to 4 days, but there were some infective L3 at end of observation. A mathematical model estimated 80 days as the time required to reduce the probability of infective larvae to zero. This data does not support the proposition of refrigerating vegetables and raw food as an isolated procedure for prophylaxis of human abdominal angiostrongylosis infection.
Resumo:
This paper examines the relationship between the level of satisfaction towards Human Resources Management practices among repatriates and the decision to remain on the home company after expatriation. Data was collected through semi-structured interviews of 28 Portuguese repatriates who remain and 16 organisational representatives from eight companies located in Portugal. The results show that (1) compensation system during the international assignment; (2) permanent support during the international assignment and; (3) recognition upon the return of the work and effort of expatriates during the international assignment are the most important HRM practices for promoting satisfaction among repatriates. Moreover, it is at repatriation phase that repatriates show higher dissatisfaction with HRM support. These findings will be discussed in detail and implications and suggestions for future research will be proposed as well.
Resumo:
The concept of HRM perceptions is a growing interest in the literature, as one of the antecedents of HRM outcomes. Regardless, not only the cognitive aspect of perception is interesting in this field (what you think) but also the affective perspective is of interest (how you feel about it). In this study we propose a scale for assessing satisfaction with the perceptions of the HRM practices. A 24 item Likert-type scale was developed considering literature review, to assess subjects’ satisfaction with Human Resources Practices in a healthcare setting. Talked reflections were held and a survey encompassing all workers from a Hospital was conducted later, with a sample of 922 subjects. Exploratory and Confirmatory Factor Analysis were performed; reliability was tested using Cronbach’s alpha. The scale presents good psychometric properties with alpha values that range from .71 to .91. Exploratory and Confirmatory Factor Analysis demonstrated that the scale presents a very good fit with CFI= 0.94, AGFI= 0.88, and RMSEA= 0.07. The present study represents a first approach in the usage of this scale and despite having a large sample, respondents originate from a single institution. This study presents a pertinent scale towards measuring a seldom explored construct of the worker-organization relationship. The scale is parsimonious and results are promising. There seems to be very little research on how subjects feel about the HRM practices. This construct, very much in line with more recent studies concerning worker perceptions can be especially interesting in the context of the worker-organization relationship.
Resumo:
Esta dissertação descreve o sistema de apoio à racionalização da utilização de energia eléctrica desenvolvido no âmbito da unidade curricular de Tese/Dissertação. O domínio de aplicação enquadra-se no contexto da Directiva da União Europeia 2006/32/EC que declara ser necessário colocar à disposição dos consumidores a informação e os meios que promovam a redução do consumo e o aumento da eficiência energética individual. O objectivo é o desenvolvimento de uma solução que permita a representação gráfica do consumo/produção, a definição de tectos de consumo, a geração automática de alertas e alarmes, a comparação anónima com clientes com perfil idêntico por região e a previsão de consumo/produção no caso de clientes industriais. Trata-se de um sistema distribuído composto por front-end e back-end. O front-end é composto pelas aplicações de interface com o utilizador desenvolvidas para dispositivos móveis Android e navegadores Web. O back-end efectua o armazenamento e processamento de informação e encontra-se alojado numa plataforma de cloud computing – o Google App Engine – que disponibiliza uma interface padrão do tipo serviço Web. Esta opção assegura interoperabilidade, escalabilidade e robustez ao sistema. Descreve-se em detalhe a concepção, desenvolvimento e teste do protótipo realizado, incluindo: (i) as funcionalidades de gestão e análise de consumo e produção de energia implementadas; (ii) as estruturas de dados; (iii) a base de dados e o serviço Web; e (iv) os testes e a depuração efectuados. (iv) Por fim, apresenta-se o balanço deste projecto e efectuam-se sugestões de melhoria.
Resumo:
All over the world, the liberalization of electricity markets, which follows different paradigms, has created new challenges for those involved in this sector. In order to respond to these challenges, electric power systems suffered a significant restructuring in its mode of operation and planning. This restructuring resulted in a considerable increase of the electric sector competitiveness. Particularly, the Ancillary Services (AS) market has been target of constant renovations in its operation mode as it is a targeted market for the trading of services, which have as main objective to ensure the operation of electric power systems with appropriate levels of stability, safety, quality, equity and competitiveness. In this way, with the increasing penetration of distributed energy resources including distributed generation, demand response, storage units and electric vehicles, it is essential to develop new smarter and hierarchical methods of operation of electric power systems. As these resources are mostly connected to the distribution network, it is important to consider the introduction of this kind of resources in AS delivery in order to achieve greater reliability and cost efficiency of electrical power systems operation. The main contribution of this work is the design and development of mechanisms and methodologies of AS market and for energy and AS joint market, considering different management entities of transmission and distribution networks. Several models developed in this work consider the most common AS in the liberalized market environment: Regulation Down; Regulation Up; Spinning Reserve and Non-Spinning Reserve. The presented models consider different rules and ways of operation, such as the division of market by network areas, which allows the congestion management of interconnections between areas; or the ancillary service cascading process, which allows the replacement of AS of superior quality by lower quality of AS, ensuring a better economic performance of the market. A major contribution of this work is the development an innovative methodology of market clearing process to be used in the energy and AS joint market, able to ensure viable and feasible solutions in markets, where there are technical constraints in the transmission network involving its division into areas or regions. The proposed method is based on the determination of Bialek topological factors and considers the contribution of the dispatch for all services of increase of generation (energy, Regulation Up, Spinning and Non-Spinning reserves) in network congestion. The use of Bialek factors in each iteration of the proposed methodology allows limiting the bids in the market while ensuring that the solution is feasible in any context of system operation. Another important contribution of this work is the model of the contribution of distributed energy resources in the ancillary services. In this way, a Virtual Power Player (VPP) is considered in order to aggregate, manage and interact with distributed energy resources. The VPP manages all the agents aggregated, being able to supply AS to the system operator, with the main purpose of participation in electricity market. In order to ensure their participation in the AS, the VPP should have a set of contracts with the agents that include a set of diversified and adapted rules to each kind of distributed resource. All methodologies developed and implemented in this work have been integrated into the MASCEM simulator, which is a simulator based on a multi-agent system that allows to study complex operation of electricity markets. In this way, the developed methodologies allow the simulator to cover more operation contexts of the present and future of the electricity market. In this way, this dissertation offers a huge contribution to the AS market simulation, based on models and mechanisms currently used in several real markets, as well as the introduction of innovative methodologies of market clearing process on the energy and AS joint market. This dissertation presents five case studies; each one consists of multiple scenarios. The first case study illustrates the application of AS market simulation considering several bids of market players. The energy and ancillary services joint market simulation is exposed in the second case study. In the third case study it is developed a comparison between the simulation of the joint market methodology, in which the player bids to the ancillary services is considered by network areas and a reference methodology. The fourth case study presents the simulation of joint market methodology based on Bialek topological distribution factors applied to transmission network with 7 buses managed by a TSO. The last case study presents a joint market model simulation which considers the aggregation of small players to a VPP, as well as complex contracts related to these entities. The case study comprises a distribution network with 33 buses managed by VPP, which comprises several kinds of distributed resources, such as photovoltaic, CHP, fuel cells, wind turbines, biomass, small hydro, municipal solid waste, demand response, and storage units.
Resumo:
In recent years, vehicular cloud computing (VCC) has emerged as a new technology which is being used in wide range of applications in the area of multimedia-based healthcare applications. In VCC, vehicles act as the intelligent machines which can be used to collect and transfer the healthcare data to the local, or global sites for storage, and computation purposes, as vehicles are having comparatively limited storage and computation power for handling the multimedia files. However, due to the dynamic changes in topology, and lack of centralized monitoring points, this information can be altered, or misused. These security breaches can result in disastrous consequences such as-loss of life or financial frauds. Therefore, to address these issues, a learning automata-assisted distributive intrusion detection system is designed based on clustering. Although there exist a number of applications where the proposed scheme can be applied but, we have taken multimedia-based healthcare application for illustration of the proposed scheme. In the proposed scheme, learning automata (LA) are assumed to be stationed on the vehicles which take clustering decisions intelligently and select one of the members of the group as a cluster-head. The cluster-heads then assist in efficient storage and dissemination of information through a cloud-based infrastructure. To secure the proposed scheme from malicious activities, standard cryptographic technique is used in which the auotmaton learns from the environment and takes adaptive decisions for identification of any malicious activity in the network. A reward and penalty is given by the stochastic environment where an automaton performs its actions so that it updates its action probability vector after getting the reinforcement signal from the environment. The proposed scheme was evaluated using extensive simulations on ns-2 with SUMO. The results obtained indicate that the proposed scheme yields an improvement of 10 % in detection rate of malicious nodes when compared with the existing schemes.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Doutor em Gestão de Informação
Resumo:
Multi-standard mobile devices are allowing users to enjoy higher data rates with ubiquitous connectivity. However, the benefits gained from multiple interfaces come at an expense—that being higher energy consumption in an era where mobile devices need to be energy compliant. One promising solution is the usage of short-range cooperative communication as an overlay for infrastructure-based networks taking advantage of its context information. However, the node discovery mechanism, which is pivotal to the bearer establishment process, still represents a major burden in terms of the total energy budget. In this paper, we propose a technology agnostic approach towards enhancing the MAC energy ratings by presenting a context-aware node discovery (CANDi) algorithm, which provides a priori knowledge towards the node discovery mechanism by allowing it to search nodes in the near vicinity at the ‘right time and at the right place’. We describe the different beacons required for establishing the cooperation, as well as the context information required, including battery level, modes, location and so on. CANDi uses the long-range network (WiMAX and WiFi) to distribute the context information about cooperative clusters (Ultra-wideband-based) in the vicinity. The searching nodes can use this context in locating the cooperative clusters/nodes, which facilitates the establishing of short-range connections. Analytical and simulation results are obtained, and the energy saving gains are further demonstrated in the laboratory using a customised testbed. CANDi saves up to 50% energy during the node discovery process, while the demonstrative testbed shows up to 75% savings in the total energy budget, thus validating the algorithm, as well as providing viable evidence to support the usage of short-range cooperative communications for energy savings.
Resumo:
Disaster management is one of the most relevant application fields of wireless sensor networks. In this application, the role of the sensor network usually consists of obtaining a representation or a model of a physical phenomenon spreading through the affected area. In this work we focus on forest firefighting operations, proposing three fully distributed ways for approximating the actual shape of the fire. In the simplest approach, a circular burnt area is assumed around each node that has detected the fire and the union of these circles gives the overall fire’s shape. However, as this approach makes an intensive use of the wireless sensor network resources, we have proposed to incorporate two in-network aggregation techniques, which do not require considering the complete set of fire detections. The first technique models the fire by means of a complex shape composed of multiple convex hulls representing different burning areas, while the second technique uses a set of arbitrary polygons. Performance evaluation of realistic fire models on computer simulations reveals that the method based on arbitrary polygons obtains an improvement of 20% in terms of accuracy of the fire shape approximation, reducing the overhead in-network resources to 10% in the best case.
Resumo:
In this manuscript we tackle the problem of semidistributed user selection with distributed linear precoding for sum rate maximization in multiuser multicell systems. A set of adjacent base stations (BS) form a cluster in order to perform coordinated transmission to cell-edge users, and coordination is carried out through a central processing unit (CU). However, the message exchange between BSs and the CU is limited to scheduling control signaling and no user data or channel state information (CSI) exchange is allowed. In the considered multicell coordinated approach, each BS has its own set of cell-edge users and transmits only to one intended user while interference to non-intended users at other BSs is suppressed by signal steering (precoding). We use two distributed linear precoding schemes, Distributed Zero Forcing (DZF) and Distributed Virtual Signalto-Interference-plus-Noise Ratio (DVSINR). Considering multiple users per cell and the backhaul limitations, the BSs rely on local CSI to solve the user selection problem. First we investigate how the signal-to-noise-ratio (SNR) regime and the number of antennas at the BSs impact the effective channel gain (the magnitude of the channels after precoding) and its relationship with multiuser diversity. Considering that user selection must be based on the type of implemented precoding, we develop metrics of compatibility (estimations of the effective channel gains) that can be computed from local CSI at each BS and reported to the CU for scheduling decisions. Based on such metrics, we design user selection algorithms that can find a set of users that potentially maximizes the sum rate. Numerical results show the effectiveness of the proposed metrics and algorithms for different configurations of users and antennas at the base stations.
Resumo:
Structural robustness is an emergent concept related to the structural response to damage. At the present time, robustness is not well defined and much controversy still remains around this subject. Even if robustness has seen growing interest as a consequence of catastrophic consequences due to extreme events, the fact is that the concept can also be very useful when considered on more probable exposure scenarios such as deterioration, among others. This paper intends to be a contribution to the definition of structural robustness, especially in the analysis of reinforced concrete structures subjected to corrosion. To achieve this, first of all, several proposed robustness definitions and indicators and misunderstood concepts will be analyzed and compared. From this point and regarding a concept that could be applied to most type of structures and dam-age scenarios, a robustness definition is proposed. To illustrate the proposed concept, an example of corroded reinforced concrete structures will be analyzed using nonlinear analysis numerical methods based on a contin-uum strong discontinuities approach and isotropic damage models for concrete. Finally the robustness of the presented example will be assessed.
Resumo:
IEEE International Conference on Cyber Physical Systems, Networks and Applications (CPSNA'15), Hong Kong, China.
Resumo:
4th International Conference on Future Generation Communication Technologies (FGCT 2015), Luton, United Kingdom.