657 resultados para Disinfection byproducts
Resumo:
Penetrating hand wounds are common and these are managed by thorough debridement. However, stab wounds without evidence of divided structures are often treated with irrigation using antiseptic substances, antibiotic therapy, and immobilization. Octenisept® (Schülke & Mayr Ltd) is a widely used antiseptic agent for disinfection of acute or chronic wounds. It has a broad spectrum of antiseptic efficacy and has become an antiseptic of first choice in many hospitals. Within a few months, four patients presented to us with chronic inflammation and severe tissue necrosis after irrigation of penetrating hand wounds with Octenisept®. Repeated surgery and debridement was required in all patients. Wound healing was prolonged and patients had persisting oedema. Penetrating hand wounds must not be irrigated with Octenisept®.
Resumo:
A main field in biomedical optics research is diffuse optical tomography, where intensity variations of the transmitted light traversing through tissue are detected. Mathematical models and reconstruction algorithms based on finite element methods and Monte Carlo simulations describe the light transport inside the tissue and determine differences in absorption and scattering coefficients. Precise knowledge of the sample's surface shape and orientation is required to provide boundary conditions for these techniques. We propose an integrated method based on structured light three-dimensional (3-D) scanning that provides detailed surface information of the object, which is usable for volume mesh creation and allows the normalization of the intensity dispersion between surface and camera. The experimental setup is complemented by polarization difference imaging to avoid overlaying byproducts caused by inter-reflections and multiple scattering in semitransparent tissue.
Resumo:
The identification of 15N-labeled 3-nitrotyrosine (NTyr) by gas chromatography/mass spectroscopy in protein hydrolyzates from activated RAW 264.7 macrophages incubated with 15N-L-arginine confirms that nitric oxide synthase (NOS) is involved in the nitration of protein-bound tyrosine (Tyr). An assay is presented for NTyr that employs HPLC with tandem electrochemical and UV detection. The assay involves enzymatic hydrolysis of protein, acetylation, solvent extraction, O-deacetylation, and dithionite reduction to produce an analyte containing N-acetyl-3-aminotyrosine, an electrochemically active derivative of NTyr. We estimate the level of protein-bound NTyr in normal rat plasma to be approximately 0-1 residues per 10(6) Tyr with a detection limit of 0.5 per 10(7) Tyr when > 100 nmol of Tyr is analyzed and when precautions are taken to limit nitration artifacts. Zymosan-treated RAW 264.7 cells were shown to have an approximately 6-fold higher level of protein-bound NTyr compared with control cells and cells treated with N(G)-monomethyl-L-arginine, an inhibitor of NOS. Intraperitoneal injection of F344 rats with zymosan led to a marked elevation in protein-bound NTyr to approximately 13 residues per 10(6) Tyr, an approximately 40-fold elevation compared with plasma protein of untreated rats; cotreatment with N(G)-monomethyl-L-arginine inhibited the formation of NTyr in plasma protein from blood and peritoneal exudate by 69% and 53%, respectively. This assay offers a highly sensitive and quantitative approach for investigating the role of reactive byproducts of nitric oxide in the many pathological conditions and disease states associated with NO(X) exposure such as inflammation and smoking.
Resumo:
In recent years, growing attention has been devoted to the use of lignocellulosic biomass as a feedstock to produce renewable carbohydrates as a source of energy products, including liquid alternatives to fossil fuels. The benefits of developing woody biomass to ethanol technology are to increase the long-term national energy security, reduce fossil energy consumption, lower greenhouse gas emissions, use renewable rather than depletable resources, and create local jobs. Currently, research is driven by the need to reduce the cost of biomass-ethanol production. One of the preferred methods is to thermochemically pretreat the biomass material and subsequently, enzymatically hydrolyze the pretreated material to fermentable sugars that can then be converted to ethanol using specialized microorganisms. The goals of pretreatment are to remove the hemicellulose fraction from other biomass components, reduce bioconversion time, enhance enzymatic conversion of the cellulose fraction, and, hopefully, obtain a higher ethanol yield. The primary goal of this research is to obtain kinetic detailed data for dilute acid hydrolysis for several timber species from the Upper Peninsula of Michigan and switchgrass. These results will be used to identify optimum reaction conditions to maximize production of fermentable sugars and minimize production of non-fermentable byproducts. The structural carbohydrate analysis of the biomass species used in this project was performed using the procedure proposed by National Renewable Energy Laboratory (NREL). Subsequently, dilute acid-catalyzed hydrolysis of biomass, including aspen, basswood, balsam, red maple, and switchgrass, was studied at various temperatures, acid concentrations, and particle sizes in a 1-L well-mixed batch reactor (Parr Instruments, ii Model 4571). 25 g of biomass and 500 mL of diluted acid solution were added into a 1-L glass liner, and then put into the reactor. During the experiment, 5 mL samples were taken starting at 100°C at 3 min intervals until reaching the targeted temperature (160, 175, or 190°C), followed by 4 samples after achieving the desired temperature. The collected samples were then cooled in an ice bath immediately to stop the reaction. The cooled samples were filtered using 0.2 μm MILLIPORE membrane filter to remove suspended solids. The filtered samples were then analyzed using High Performance Liquid Chromatography (HPLC) with a Bio-Rad Aminex HPX-87P column, and refractive index detection to measure monomeric and polymeric sugars plus degradation byproducts. A first order reaction model was assumed and the kinetic parameters such as activation energy and pre-exponential factor from Arrhenius equation were obtained from a match between the model and experimental data. The reaction temperature increases linearly after 40 minutes during experiments. Xylose and other sugars were formed from hemicellulose hydrolysis over this heat up period until a maximum concentration was reached at the time near when the targeted temperature was reached. However, negligible amount of xylose byproducts and small concentrations of other soluble sugars, such as mannose, arabinose, and galactose were detected during this initial heat up period. Very little cellulose hydrolysis yielding glucose was observed during the initial heat up period. On the other hand, later in the reaction during the constant temperature period xylose was degraded to furfural. Glucose production from cellulose was increased during this constant temperature period at later time points in the reaction. The kinetic coefficient governing the generation of xylose from hemicellulose and the generation of furfural from xylose presented a coherent dependence on both temperature and acid concentration. However, no effect was observed in the particle size. There were three types of biomass used in this project; hardwood (aspen, basswood, and red maple), softwood (balsam), and a herbaceous crop (switchgrass). The activation energies and the pre-exponential factors of the timber species and switchgrass were in a range of 49 - 180 kJ/mol and from 7.5x104 - 2.6x1020 min-1, respectively, for the xylose formation model. In addition, for xylose degradation, the activation energies and the preexponential factors ranged from 130 - 170 kJ/mol and from 6.8x1013 - 3.7x1017 min-1, respectively. The results compare favorably with the literature values given by Ranganathan et al, 1985. Overall, up to 92 % of the xylose was able to generate from the dilute acid hydrolysis in this project.
Resumo:
This report presents the proceedings of the Biochemical Engineering Symposium held at Kansas State University, April 28, 1973. Since a number of the contributions will be published in detail elsewhere, only brief summaries of each contribution are included here. Requests for additional information on projects conducted at The University of Nebraska should be directed to Dr. Peter J. Reilly, and those at Kansas State University to the editors. ContentsKenneth J. Jacobson, Andrew H.C. Chan, and Raymond C. Eliason, "Properties and Utilization of Small Particulates in Cattle Manure" Cady R. Engler and James S. Yohn, "Protein from Manure" Robert J. Williams, "Kinetics of Sucrose Inversion Using Invertase Immobilized on Hollow Fibers of Cellulose Acetate" David F. Aldis and Thomas A. Carlisle, "Study of a Triiodide-Resin Complex Disinfection System" John C. Heydweiller, "Modeling and Analysis of Symbiotic Growth" Kenneth J. Jacobson, "Synchronized Growth of the Blue Green Alga Microcystis aeruginosa" Clarence C. Y. Ron arui Lincoln L. S. Yang, "Computer Modeling of the Reductive Pentose Phosphate Cycle" Ming-ching T. Kuo, "Application of a Parallel Biochemical Oxidation Kinetic Model to the Design of an Activated Sludge System Including a Primary Clarifier" Prakash N. Mishra, "Optimal Synthesis of Water Renovation Systems"
Resumo:
We discuss here principal biochemical transformations of retinoid molecules in the visual cycle. We focus our analysis on the accumulating evidence of alternate pathways and functional redundancies in the cycle. The efficiency of the visual cycle depends, on one hand, on fast regeneration of the photo-bleached chromophores. On the other hand, it is crucial that the cyclic process should be highly selective to avoid accumulation of byproducts. The state-of-the-art knowledge indicates that single enzymatically active components of the cycle are not strictly selective and may require chaperones to enhance their rates. It appears that protein–protein interactions significantly improve the biological stability of the visual cycle. In particular, synthesis of thermodynamically less stable 11-cis-retinoid conformers is favored by physical interactions of the isomerases present in the retina with cellular retinaldehyde binding protein
Resumo:
Nail surgery is a special branch of hand and dermatologic surgery. It is not widely performed, and many physicians do not feel at ease to perform it. The objective of this contribution is to give a short overview of the most important surgical procedures in clinical practice. References from the literature and the author's own experiences are condensed to describe what a dermatologic practitioner with knowledge of the nail and some surgical skills can perform. Nail surgery is a precise technique that requires careful administration and attention to details. Proper patient preparation starts with a patient history to identify potential contraindications and to prevent unnecessary complications. The author recommends isopropyl alcohol scrub and chlorhexidine for disinfection and ropivacaine 1% for anesthesia. The technique used for anesthesia depends on the type of surgery. Surgical procedures are described for diagnostic biopsies, nail avulsion in general, onychogryposis, paronychia treatment, hematomas and bone fracture due to trauma, removal of subungual foreign bodies, ingrowing nails, pincer nails, warts, ungual fibrokeratomas, digital myxoid pseudocyst, subungual exostoses, and various tumors. If performed correctly with adequate skills, nail surgery will lead to functionally and aesthetically satisfying results in the majority of instances.
Resumo:
PURPOSE To investigate the likelihood of speaking up about patient safety in oncology and to clarify the effect of clinical and situational context factors on the likelihood of voicing concerns. PATIENTS AND METHODS 1013 nurses and doctors in oncology rated four clinical vignettes describing coworkers' errors and rule violations in a self-administered factorial survey (65% response rate). Multiple regression analysis was used to model the likelihood of speaking up as outcome of vignette attributes, responder's evaluations of the situation and personal characteristics. RESULTS Respondents reported a high likelihood of speaking up about patient safety but the variation between and within types of errors and rule violations was substantial. Staff without managerial function provided significantly higher levels of decision difficulty and discomfort to speak up. Based on the information presented in the vignettes, 74%-96% would speak up towards a supervisor failing to check a prescription, 45%-81% would point a coworker to a missed hand disinfection, 82%-94% would speak up towards nurses who violate a safety rule in medication preparation, and 59%-92% would question a doctor violating a safety rule in lumbar puncture. Several vignette attributes predicted the likelihood of speaking up. Perceived potential harm, anticipated discomfort, and decision difficulty were significant predictors of the likelihood of speaking up. CONCLUSIONS Clinicians' willingness to speak up about patient safety is considerably affected by contextual factors. Physicians and nurses without managerial function report substantial discomfort with speaking up. Oncology departments should provide staff with clear guidance and trainings on when and how to voice safety concerns.
Resumo:
Nosocomial infections in patients requiring renal replacement therapy have a high impact on morbidity and mortality. The most dangerous complication is bloodstream infection (BSI) associated with the vascular access, with a low BSI risk in arteriovenous fistulas or grafts and a comparatively high risk in central venous catheters. The single most important measure for preventing BSI is therefore the reduction of catheter use by means of early fistula formation. As this is not always feasible, prevention should focus on educational efforts, hand hygiene, surveillance of dialysis-associated events, and specific measures at and after the insertion of catheters. Core measures at the time of insertion include choosing the optimal site of insertion, the use of maximum sterile barrier precautions, adequate skin antisepsis, and the choice of catheter type; after insertion, access care needs to ensure hub disinfection and regular dressing changes. The application of antimicrobial locks is reserved for special situations. Evidence suggests that bundling a selection of the aforementioned measures can significantly reduce infection rates. The diagnosis of central line-associated BSI (CLABSI) is based on clinical signs and microbiological findings in blood cultures ideally drawn both peripherally and from the catheter. The prompt installation of empiric antibiotic treatment covering the most commonly encountered organisms is key regarding CLABSI treatment. Catheter removal is recommended in complicated cases or if cultures yield Staphylococcus aureus, enterococci, Pseudomonas or fungi. In other cases, guide wire exchange or catheter salvage strategies with antibiotic lock solutions may be acceptable alternatives.
Resumo:
INTRODUCTION During dentinogenesis, growth factors become entrapped in the dentin matrix that can later be released by demineralization. Their effect on pulpal stem cell migration, proliferation, and differentiation could be beneficial for regenerative endodontic therapies. However, precondition for success, as for conventional root canal treatment, will be sufficient disinfection of the root canal system. Various irrigation solutions and intracanal dressings are available for clinical use. The aim of this study was 2-fold: to identify a demineralizing solution suitable for growth factor release directly from dentin and to evaluate whether commonly used disinfectants for endodontic treatment will compromise this effect. METHODS Dentin disks were prepared from extracted human teeth and treated with EDTA or citric acid at different concentrations or pH for different exposure periods. The amount of transforming growth factor-β1 (TGF-β1), fibroblast growth factor 2, and vascular endothelial growth factor were quantified via enzyme-linked immunosorbent assay and visualized by gold labeling. Subsequently, different irrigation solutions (5.25% sodium hypochloride, 0.12% chlorhexidine digluconate) and intracanal dressings (corticoid-antibiotic paste, calcium hydroxide: water-based and oil-based, triple antibiotic paste, chlorhexidine gel) were tested, and the release of TGF-β1 was measured after a subsequent conditioning step with EDTA. RESULTS Conditioning with 10% EDTA at pH 7 rendered the highest amounts of TGF-β1 among all test solutions. Fibroblast growth factor 2 and vascular endothelial growth factor were detected after EDTA conditioning at minute concentrations. Irrigation with chlorhexidine before EDTA conditioning increased TGF-β1 release; sodium hypochloride had the opposite effect. All tested intracanal dressings interfered with TGF-β1 release except water-based calcium hydroxide. CONCLUSIONS Growth factors can be released directly from dentin via EDTA conditioning. The use of disinfecting solutions or medicaments can amplify or attenuate this effect.
Resumo:
Non routine hospital settings are those that are infrequently used in hospitals and that often do not come to mind when sanitation and disinfection practices are used. These settings are a major source of nosocomial, or hospital acquired, infections, and are often overlooked. Data on these sources are often scattered and scarce, but these sources are significant such that they warrant equal attention of commonly recognized nosocomial infection sources in order to help reduce incidence of nosocomial infections. ^
Resumo:
The study was carried out at St. Luke's Episcopal Hospital to evaluate environmental contamination of Clostridium difficile in the infected patient rooms. Samples were collected from the high risk areas and were immediately cultured for the presence of Clostridium difficile . Lack of microbial typing prevented the study of molecular characterization of the Clostridium difficile isolates obtained led to a change in the study hypothesis. The study found a positivity of 10% among 50 Hospital rooms sampled for the presence of Clostridium difficile. The study provided data that led to recommendations that routine environmental sampling be carried in the hospital rooms in which patients with CDAD are housed and that effective environmental disinfection methods are used. The study also recommended molecular typing methods to allow characterization of the CD strains isolated from patients and environmental sampling to determine their type, similarity and origin.^
Resumo:
OBJECTIVE. To determine the effectiveness of active surveillance cultures and associated infection control practices on the incidence of methicillin resistant Staphylococcus aureus (MRSA) in the acute care setting. DESIGN. A historical analysis of existing clinical data utilizing an interrupted time series design. ^ SETTING AND PARTICIPANTS. Patients admitted to a 260-bed tertiary care facility in Houston, TX between January 2005 through December 2010. ^ INTERVENTION. Infection control practices, including enhanced barrier precautions, compulsive hand hygiene, disinfection and environmental cleaning, and executive ownership and education, were simultaneously introduced during a 5-month intervention implementation period culminating with the implementation of active surveillance screening. Beginning June 2007, all high risk patients were cultured for MRSA nasal carriage within 48 hours of admission. Segmented Poisson regression was used to test the significance of the difference in incidence of healthcare-associated MRSA during the 29-month pre-intervention period compared to the 43-month post-intervention period. ^ RESULTS. A total of 9,957 of 11,095 high-risk patients (89.7%) were screened for MRSA carriage during the intervention period. Active surveillance cultures identified 1,330 MRSA-positive patients (13.4%) contributing to an admission prevalence of 17.5% in high-risk patients. The mean rate of healthcare-associated MRSA infection and colonization decreased from 1.1 per 1,000 patient-days in the pre-intervention period to 0.36 per 1,000 patient-days in the post-intervention period (P<0.001). The effect of the intervention in association with the percentage of S. aureus isolates susceptible to oxicillin were shown to be statistically significantly associated with the incidence of MRSA infection and colonization (IRR = 0.50, 95% CI = 0.31-0.80 and IRR = 0.004, 95% CI = 0.00003-0.40, respectively). ^ CONCLUSIONS. It can be concluded that aggressively targeting patients at high risk for colonization of MRSA with active surveillance cultures and associated infection control practices as part of a multifaceted, hospital-wide intervention is effective in reducing the incidence of healthcare-associated MRSA.^
Resumo:
Con el objeto de ajustar un método de evaluación a campo para facilitar la selección de clones de ajo (Allium sativum L.) con resistencia a Penicillium allii, se realizó un ensayo replicado en el cual se midió la respuesta de tres clones experimentales a la infección, en dos épocas de plantación. Los tratamientos incluyeron combinaciones de presencia o ausencia de: a) desinfección de la "semilla", b) heridas artificiales en los bulbillos, c) inoculación artificial. Los bulbillos con la hoja envolvente se desinfectaron con una solución diluida de hipoclorito de sodio. La inoculación se realizó mediante la inmersión en una solución de 106 esporas•ml-1. Las heridas se realizaron con una lanceta (blood lancet). Los bulbillos se incubaron en cámara húmeda durante 24 horas a 20 °C, antes de plantación. Las variables respuestas computadas fueron las siguientes: número de plantas muertas, y vivas con síntomas y sin síntomas, a los 152 días de plantación en la primera época y 118 días en la segunda; número de bulbos por calibres y rendimiento a cosecha. La información obtenida se analizó a través de correspondencia simple, diferencia de proporciones y análisis paramétricos. Se detectaron mayores diferencias entre los tratamientos en la tasa de sobrevivencia y en la proporción de calibres comerciales en la época tardía. No se observaron diferencias (p < 0,05) del rendimiento en la plantación temprana. La herida fue determinante en el ingreso del patógeno. Los tratamientos quedaron limitados a un testigo: desinfectado, no inoculado y sin herida, y a un tratamiento: desinfectado, con inoculación y herida. Con respecto a la época, resultó conveniente la evaluación en plantaciones tardías porque se expresan mejor las diferencias entre los tratamientos.
Resumo:
The tissue-specific composition of sum classes of brominated and chlorinated contaminants and metabolic/degradation byproducts was determined in adult male and female polar bears from East Greenland. Significantly (p < 0.05) higher concentrations of SUM-PCBs, various other organochlorines such as SUM-CHL, p,p'-DDE, SUM-CBz, SUM-HCHs, octachlorostyrene (OCS),SUM-mirex, dieldrin, the flame retardants SUM-PBDEs, and total-(R)-hexabromocyclododecane (HBCD), SUM-methylsulfonyl (MeSO2)-PCBs and 3-MeSO2-p,p'-DDE, were found in the adipose and liver tissues relative to whole blood and brain. In contrast, SUM-hydroxyl (OH)-PCB, 4-OH-heptachlorostyrene and SUM-OH-PBDE concentrations were significantly highest (p < 0.05) in whole blood, whereas the highest concentrations of SUM-OH-PBBs were found in the adipose tissue. Based on the total concentrations of all organohalogens in all three tissues and blood, the combined body burden was estimated to be 1.34 ± 0.12 g, where >91% of this amount was accounted for by the adipose tissue alone, followed by the liver, whole blood, and brain. These results show that factors such as protein association and lipid solubility appear to be differentially influencing the toxicokinetics, in terms of tissue composition/localization and burden, of organohalogen classes with respect to chemical structure and properties such as the type of halogenation (e.g., chlorination or bromination), and the presence or absence of additional phenyl group substituents (e.g., MeO and OH groups). The tissue- and blood-specific accumulation (or retention) among organohalogen classes indicates that exposure and any potential contaminant-mediated effects in these polar bears are likely tissue or blood specific.