848 resultados para Digital information environments
Resumo:
A major infrastructure project is used to investigate the role of digital objects in the coordination of engineering design work. From a practice-based perspective, research emphasizes objects as important in enabling cooperative knowledge work and knowledge sharing. The term ‘boundary object’ has become used in the analysis of mutual and reciprocal knowledge sharing around physical and digital objects. The aim is to extend this work by analysing the introduction of an extranet into the public–private partnership project used to construct a new motorway. Multiple categories of digital objects are mobilized in coordination across heterogeneous, cross-organizational groups. The main findings are that digital objects provide mechanisms for accountability and control, as well as for mutual and reciprocal knowledge sharing; and that different types of objects are nested, forming a digital infrastructure for project delivery. Reconceptualizing boundary objects as a digital infrastructure for delivery has practical implications for management practices on large projects and for the use of digital tools, such as building information models, in construction. It provides a starting point for future research into the changing nature of digitally enabled coordination in project-based work.
Resumo:
New skills are needed to compete, as integrated software solutions provide a digital infrastructure for projects. This changes the practice of information management and engineering design on next generation projects.
Resumo:
In the emerging digital economy, the management of information in aerospace and construction organisations is facing a particular challenge due to the ever-increasing volume of information and the extensive use of information and communication technologies (ICTs). This paper addresses the problems of information overload and the value of information in both industries by providing some cross-disciplinary insights. In particular it identifies major issues and challenges in the current information evaluation practice in these two industries. Interviews were conducted to get a spectrum of industrial perspectives (director/strategic, project management and ICT/document management) on these issues in particular to information storage and retrieval strategies and the contrasting approaches to knowledge and information management of personalisation and codification. Industry feedback was collected by a follow-up workshop to strengthen the findings of the research. An information-handling agenda is outlined for the development of a future Information Evaluation Methodology (IEM) which could facilitate the practice of the codification of high-value information in order to support through-life knowledge and information management (K&IM) practice.
Resumo:
The problems encountered by individuals with disabilities when accessing large public buildings is described and a solution based on the generation of virtual models of the built environment is proposed. These models are superimposed on a control network infrastructure, currently utilised in intelligent building applications such as lighting, heating and access control. The use of control network architectures facilitates the creation of distributed models that closely mirror both the physical and control properties of the environment. The model of the environment is kept local to the installation which allows the virtual representation of a large building to be decomposed into an interconnecting series of smaller models. This paper describes two methods of interacting with the virtual model, firstly a two dimensional aural representation that can be used as the basis of a portable navigational device. Secondly an augmented reality called DAMOCLES that overlays additional information on a user’s normal field of view. The provision of virtual environments offers new possibilities in the man-machine interface so that intuitive access to network based services and control functions can be given to a user.
Resumo:
As digital technologies become widely used in designing buildings and infrastructure, questions arise about their impacts on construction safety. This review explores relationships between construction safety and digital design practices with the aim of fostering and directing further research. It surveys state-of-the-art research on databases, virtual reality, geographic information systems, 4D CAD, building information modeling and sensing technologies, finding various digital tools for addressing safety issues in the construction phase, but few tools to support design for construction safety. It also considers a literature on safety critical, digital and design practices that raises a general concern about ‘mindlessness’ in the use of technologies, and has implications for the emerging research agenda around construction safety and digital design. Bringing these strands of literature together suggests new kinds of interventions, such as the development of tools and processes for using digital models to promote mindfulness through multi-party collaboration on safety
Resumo:
SMEs are widely recognized as an important driving force of economic growth, yet, their uptake of ICT is still very low. Tosupport SMEs ICT adoption and to foster regional development, in 2000, the Lisbon Strategy on the Information Society andKnowledge-based economy created a vision for 2010 towards the creation of the European Digital Business Ecosystems(DBE). This paper is positioned within that context and reports upon a project involving 6000 SMEs whose aim was tosupport ICT adoption and to encourage SME networks through the creation of a Regional Business Portal. The papere xplores factors affecting the regional SMEs participating in the DBE. An in-depth longitudinal case study approach was adopted and multiple sources of evidence were used. Many factors affecting SMEs progression to DBE were identified:including people and organization, environmental, diffusion networks, technological, regional and time factors
Resumo:
We present a novel way of interacting with an immersive virtual environment which involves inexpensive motion-capture using the Wii Remote®. A software framework is also presented to visualize and share this information across two remote CAVETM-like environments. The resulting application can be used to assist rehabilitation by sending motion information across remote sites. The application’s software and hardware components are scalable enough to be used on a desktop computer when home-based rehabilitation is preferred.
Resumo:
The United Nation Intergovernmental Panel on Climate Change (IPCC) makes it clear that climate change is due to human activities and it recognises buildings as a distinct sector among the seven analysed in its 2007 Fourth Assessment Report. Global concerns have escalated regarding carbon emissions and sustainability in the built environment. The built environment is a human-made setting to accommodate human activities, including building and transport, which covers an interdisciplinary field addressing design, construction, operation and management. Specifically, Sustainable Buildings are expected to achieve high performance throughout the life-cycle of siting, design, construction, operation, maintenance and demolition, in the following areas: • energy and resource efficiency; • cost effectiveness; • minimisation of emissions that negatively impact global warming, indoor air quality and acid rain; • minimisation of waste discharges; and • maximisation of fulfilling the requirements of occupants’ health and wellbeing. Professionals in the built environment sector, for example, urban planners, architects, building scientists, engineers, facilities managers, performance assessors and policy makers, will play a significant role in delivering a sustainable built environment. Delivering a sustainable built environment needs an integrated approach and so it is essential for built environment professionals to have interdisciplinary knowledge in building design and management . Building and urban designers need to have a good understanding of the planning, design and management of the buildings in terms of low carbon and energy efficiency. There are a limited number of traditional engineers who know how to design environmental systems (services engineer) in great detail. Yet there is a very large market for technologists with multi-disciplinary skills who are able to identify the need for, envision and manage the deployment of a wide range of sustainable technologies, both passive (architectural) and active (engineering system),, and select the appropriate approach. Employers seek applicants with skills in analysis, decision-making/assessment, computer simulation and project implementation. An integrated approach is expected in practice, which encourages built environment professionals to think ‘out of the box’ and learn to analyse real problems using the most relevant approach, irrespective of discipline. The Design and Management of Sustainable Built Environment book aims to produce readers able to apply fundamental scientific research to solve real-world problems in the general area of sustainability in the built environment. The book contains twenty chapters covering climate change and sustainability, urban design and assessment (planning, travel systems, urban environment), urban management (drainage and waste), buildings (indoor environment, architectural design and renewable energy), simulation techniques (energy and airflow), management (end-user behaviour, facilities and information), assessment (materials and tools), procurement, and cases studies ( BRE Science Park). Chapters one and two present general global issues of climate change and sustainability in the built environment. Chapter one illustrates that applying the concepts of sustainability to the urban environment (buildings, infrastructure, transport) raises some key issues for tackling climate change, resource depletion and energy supply. Buildings, and the way we operate them, play a vital role in tackling global greenhouse gas emissions. Holistic thinking and an integrated approach in delivering a sustainable built environment is highlighted. Chapter two demonstrates the important role that buildings (their services and appliances) and building energy policies play in this area. Substantial investment is required to implement such policies, much of which will earn a good return. Chapters three and four discuss urban planning and transport. Chapter three stresses the importance of using modelling techniques at the early stage for strategic master-planning of a new development and a retrofit programme. A general framework for sustainable urban-scale master planning is introduced. This chapter also addressed the needs for the development of a more holistic and pragmatic view of how the built environment performs, , in order to produce tools to help design for a higher level of sustainability and, in particular, how people plan, design and use it. Chapter four discusses microcirculation, which is an emerging and challenging area which relates to changing travel behaviour in the quest for urban sustainability. The chapter outlines the main drivers for travel behaviour and choices, the workings of the transport system and its interaction with urban land use. It also covers the new approach to managing urban traffic to maximise economic, social and environmental benefits. Chapters five and six present topics related to urban microclimates including thermal and acoustic issues. Chapter five discusses urban microclimates and urban heat island, as well as the interrelationship of urban design (urban forms and textures) with energy consumption and urban thermal comfort. It introduces models that can be used to analyse microclimates for a careful and considered approach for planning sustainable cities. Chapter six discusses urban acoustics, focusing on urban noise evaluation and mitigation. Various prediction and simulation methods for sound propagation in micro-scale urban areas, as well as techniques for large scale urban noise-mapping, are presented. Chapters seven and eight discuss urban drainage and waste management. The growing demand for housing and commercial developments in the 21st century, as well as the environmental pressure caused by climate change, has increased the focus on sustainable urban drainage systems (SUDS). Chapter seven discusses the SUDS concept which is an integrated approach to surface water management. It takes into consideration quality, quantity and amenity aspects to provide a more pleasant habitat for people as well as increasing the biodiversity value of the local environment. Chapter eight discusses the main issues in urban waste management. It points out that population increases, land use pressures, technical and socio-economic influences have become inextricably interwoven and how ensuring a safe means of dealing with humanity’s waste becomes more challenging. Sustainable building design needs to consider healthy indoor environments, minimising energy for heating, cooling and lighting, and maximising the utilisation of renewable energy. Chapter nine considers how people respond to the physical environment and how that is used in the design of indoor environments. It considers environmental components such as thermal, acoustic, visual, air quality and vibration and their interaction and integration. Chapter ten introduces the concept of passive building design and its relevant strategies, including passive solar heating, shading, natural ventilation, daylighting and thermal mass, in order to minimise heating and cooling load as well as energy consumption for artificial lighting. Chapter eleven discusses the growing importance of integrating Renewable Energy Technologies (RETs) into buildings, the range of technologies currently available and what to consider during technology selection processes in order to minimise carbon emissions from burning fossil fuels. The chapter draws to a close by highlighting the issues concerning system design and the need for careful integration and management of RETs once installed; and for home owners and operators to understand the characteristics of the technology in their building. Computer simulation tools play a significant role in sustainable building design because, as the modern built environment design (building and systems) becomes more complex, it requires tools to assist in the design process. Chapter twelve gives an overview of the primary benefits and users of simulation programs, the role of simulation in the construction process and examines the validity and interpretation of simulation results. Chapter thirteen particularly focuses on the Computational Fluid Dynamics (CFD) simulation method used for optimisation and performance assessment of technologies and solutions for sustainable building design and its application through a series of cases studies. People and building performance are intimately linked. A better understanding of occupants’ interaction with the indoor environment is essential to building energy and facilities management. Chapter fourteen focuses on the issue of occupant behaviour; principally, its impact, and the influence of building performance on them. Chapter fifteen explores the discipline of facilities management and the contribution that this emerging profession makes to securing sustainable building performance. The chapter highlights a much greater diversity of opportunities in sustainable building design that extends well into the operational life. Chapter sixteen reviews the concepts of modelling information flows and the use of Building Information Modelling (BIM), describing these techniques and how these aspects of information management can help drive sustainability. An explanation is offered concerning why information management is the key to ‘life-cycle’ thinking in sustainable building and construction. Measurement of building performance and sustainability is a key issue in delivering a sustainable built environment. Chapter seventeen identifies the means by which construction materials can be evaluated with respect to their sustainability. It identifies the key issues that impact the sustainability of construction materials and the methodologies commonly used to assess them. Chapter eighteen focuses on the topics of green building assessment, green building materials, sustainable construction and operation. Commonly-used assessment tools such as BRE Environmental Assessment Method (BREEAM), Leadership in Energy and Environmental Design ( LEED) and others are introduced. Chapter nineteen discusses sustainable procurement which is one of the areas to have naturally emerged from the overall sustainable development agenda. It aims to ensure that current use of resources does not compromise the ability of future generations to meet their own needs. Chapter twenty is a best-practice exemplar - the BRE Innovation Park which features a number of demonstration buildings that have been built to the UK Government’s Code for Sustainable Homes. It showcases the very latest innovative methods of construction, and cutting edge technology for sustainable buildings. In summary, Design and Management of Sustainable Built Environment book is the result of co-operation and dedication of individual chapter authors. We hope readers benefit from gaining a broad interdisciplinary knowledge of design and management in the built environment in the context of sustainability. We believe that the knowledge and insights of our academics and professional colleagues from different institutions and disciplines illuminate a way of delivering sustainable built environment through holistic integrated design and management approaches. Last, but not least, I would like to take this opportunity to thank all the chapter authors for their contribution. I would like to thank David Lim for his assistance in the editorial work and proofreading.
Resumo:
Climate modeling is a complex process, requiring accurate and complete metadata in order to identify, assess and use climate data stored in digital repositories. The preservation of such data is increasingly important given the development of ever-increasingly complex models to predict the effects of global climate change. The EU METAFOR project has developed a Common Information Model (CIM) to describe climate data and the models and modelling environments that produce this data. There is a wide degree of variability between different climate models and modelling groups. To accommodate this, the CIM has been designed to be highly generic and flexible, with extensibility built in. METAFOR describes the climate modelling process simply as "an activity undertaken using software on computers to produce data." This process has been described as separate UML packages (and, ultimately, XML schemas). This fairly generic structure canbe paired with more specific "controlled vocabularies" in order to restrict the range of valid CIM instances. The CIM will aid digital preservation of climate models as it will provide an accepted standard structure for the model metadata. Tools to write and manage CIM instances, and to allow convenient and powerful searches of CIM databases,. Are also under development. Community buy-in of the CIM has been achieved through a continual process of consultation with the climate modelling community, and through the METAFOR team’s development of a questionnaire that will be used to collect the metadata for the Intergovernmental Panel on Climate Change’s (IPCC) Coupled Model Intercomparison Project Phase 5 (CMIP5) model runs.
Resumo:
How can organizations use digital infrastructure to realise physical outcomes? The design and construction of London Heathrow Terminal 5 is analysed to build new theoretical understanding of visualization and materialization practices in the transition from digital design to physical realisation. In the project studied, an integrated software solution is introduced as an infrastructure for delivery. The analyses articulate the work done to maintain this digital infrastructure and also to move designs beyond the closed world of the computer to a physical reality. In changing medium, engineers use heterogeneous trials to interrogate and address the limitations of an integrated digital model. The paper explains why such trials, which involve the reconciliation of digital and physical data through parallel and iterative forms of work, provide a robust practice for realizing goals that have physical outcomes. It argues that this practice is temporally different from, and at times in conflict with, building a comprehensive dataset within the digital medium. The paper concludes by discussing the implications for organizations that use digital infrastructures in seeking to accomplish goals in digital and physical media.
Resumo:
This chapter presents techniques used for the generation of 3D digital elevation models (DEMs) from remotely sensed data. Three methods are explored and discussed—optical stereoscopic imagery, Interferometric Synthetic Aperture Radar (InSAR), and LIght Detection and Ranging (LIDAR). For each approach, the state-of-the-art presented in the literature is reviewed. Techniques involved in DEM generation are presented with accuracy evaluation. Results of DEMs reconstructed from remotely sensed data are illustrated. While the processes of DEM generation from satellite stereoscopic imagery represents a good example of passive, multi-view imaging technology, discussed in Chap. 2 of this book, InSAR and LIDAR use different principles to acquire 3D information. With regard to InSAR and LIDAR, detailed discussions are conducted in order to convey the fundamentals of both technologies.
Resumo:
Sri Lanka's participation rates in higher education are low and have risen only slightly in the last few decades; the number of places for higher education in the state university system only caters for around 3% of the university entrant age cohort. The literature reveals that the highly competitive global knowledge economy increasingly favours workers with high levels of education who are also lifelong learners. This lack of access to higher education for a sizable proportion of the labour force is identified as a severe impediment to Sri Lanka‟s competitiveness in the global knowledge economy. The literature also suggests that Information and Communication Technologies are increasingly relied upon in many contexts in order to deliver flexible learning, to cater especially for the needs of lifelong learners in today‟s higher educational landscape. The government of Sri Lanka invested heavily in ICTs for distance education during the period 2003-2009 in a bid to increase access to higher education; but there has been little research into the impact of this. To address this lack, this study investigated the impact of ICTs on distance education in Sri Lanka with respect to increasing access to higher education. In order to achieve this aim, the research focused on Sri Lanka‟s effort from three perspectives: policy perspective, implementation perspective and user perspective. A multiple case study research using an ethnographic approach was conducted to observe Orange Valley University‟s and Yellow Fields University‟s (pseudonymous) implementation of distance education programmes using questionnaires, qualitative interviewing and document analysis. In total, data for the analysis was collected from 129 questionnaires, 33 individual interviews and 2 group interviews. The research revealed that ICTs have indeed increased opportunities for higher education; but mainly for people of affluent families from the Western Province. Issues identified were categorized under the themes: quality assurance, location, language, digital literacies and access to resources. Recommendations were offered to tackle the identified issues in accordance with the study findings. The study also revealed the strong presence of a multifaceted digital divide in the country. In conclusion, this research has shown that iii although ICT-enabled distance education has the potential to increase access to higher education the present implementation of the system in Sri Lanka has been less than successful.