967 resultados para Differential equations, Nonlinear -- Numerical solutions -- Computer programs
Resumo:
Available on demand as hard copy or computer file from Cornell University Library.
Resumo:
Mode of access: Internet.
Resumo:
This work formulates existence theorems for solutions to two-point boundary value problems on time scales. The methods used include maximum principles, a priori bounds and topological degree theory.
Resumo:
We consider the boundary value problems for nonlinear second-order differential equations of the form u '' + a(t)f (u) = 0, 0 < t < 1, u(0) = u (1) = 0. We give conditions on the ratio f (s)/s at infinity and zero that guarantee the existence of solutions with prescribed nodal properties. Then we establish existence and multiplicity results for nodal solutions to the problem. The proofs of our main results are based upon bifurcation techniques. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We consider boundary value problems for nonlinear second order differential equations of the form u + a(t) f(u) = 0, t epsilon (0, 1), u(0) = u(1) = 0, where a epsilon C([0, 1], (0, infinity)) and f : R --> R is continuous and satisfies f (s)s > 0 for s not equal 0. We establish existence and multiplicity results for nodal solutions to the problems if either f(0) = 0, f(infinity) = infinity or f(0) = infinity, f(0) = 0, where f (s)/s approaches f(0) and f(infinity) as s approaches 0 and infinity, respectively. We use bifurcation techniques to prove our main results. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Purpose - In many scientific and engineering fields, large-scale heat transfer problems with temperature-dependent pore-fluid densities are commonly encountered. For example, heat transfer from the mantle into the upper crust of the Earth is a typical problem of them. The main purpose of this paper is to develop and present a new combined methodology to solve large-scale heat transfer problems with temperature-dependent pore-fluid densities in the lithosphere and crust scales. Design/methodology/approach - The theoretical approach is used to determine the thickness and the related thermal boundary conditions of the continental crust on the lithospheric scale, so that some important information can be provided accurately for establishing a numerical model of the crustal scale. The numerical approach is then used to simulate the detailed structures and complicated geometries of the continental crust on the crustal scale. The main advantage in using the proposed combination method of the theoretical and numerical approaches is that if the thermal distribution in the crust is of the primary interest, the use of a reasonable numerical model on the crustal scale can result in a significant reduction in computer efforts. Findings - From the ore body formation and mineralization points of view, the present analytical and numerical solutions have demonstrated that the conductive-and-advective lithosphere with variable pore-fluid density is the most favorite lithosphere because it may result in the thinnest lithosphere so that the temperature at the near surface of the crust can be hot enough to generate the shallow ore deposits there. The upward throughflow (i.e. mantle mass flux) can have a significant effect on the thermal structure within the lithosphere. In addition, the emplacement of hot materials from the mantle may further reduce the thickness of the lithosphere. Originality/value - The present analytical solutions can be used to: validate numerical methods for solving large-scale heat transfer problems; provide correct thermal boundary conditions for numerically solving ore body formation and mineralization problems on the crustal scale; and investigate the fundamental issues related to thermal distributions within the lithosphere. The proposed finite element analysis can be effectively used to consider the geometrical and material complexities of large-scale heat transfer problems with temperature-dependent fluid densities.
Resumo:
Recently the Balanced method was introduced as a class of quasi-implicit methods for solving stiff stochastic differential equations. We examine asymptotic and mean-square stability for several implementations of the Balanced method and give a generalized result for the mean-square stability region of any Balanced method. We also investigate the optimal implementation of the Balanced method with respect to strong convergence.
Resumo:
Despite the number of computer-assisted methods described for the derivation of steady-state equations of enzyme systems, most of them are focused on strict steady-state conditions or are not able to solve complex reaction mechanisms. Moreover, many of them are based on computer programs that are either not readily available or have limitations. We present here a computer program called WinStes, which derives equations for both strict steady-state systems and those with the assumption of rapid equilibrium, for branched or unbranched mechanisms, containing both reversible and irreversible conversion steps. It solves reaction mechanisms involving up to 255 enzyme species, connected by up to 255 conversion steps. The program provides all the advantages of the Windows programs, such as a user-friendly graphical interface, and has a short computation time. WinStes is available free of charge on request from the authors. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Cilia and flagella are hairlike extensions of eukaryotic cells which generate oscillatory beat patterns that can propel micro-organisms and create fluid flows near cellular surfaces. The evolutionary highly conserved core of cilia and flagella consists of a cylindrical arrangement of nine microtubule doublets, called the axoneme. The axoneme is an actively bending structure whose motility results from the action of dynein motor proteins cross-linking microtubule doublets and generating stresses that induce bending deformations. The periodic beat patterns are the result of a mechanical feedback that leads to self-organized bending waves along the axoneme. Using a theoretical framework to describe planar beating motion, we derive a nonlinear wave equation that describes the fundamental Fourier mode of the axonemal beat. We study the role of nonlinearities and investigate how the amplitude of oscillations increases in the vicinity of an oscillatory instability. We furthermore present numerical solutions of the nonlinear wave equation for different boundary conditions. We find that the nonlinear waves are well approximated by the linearly unstable modes for amplitudes of beat patterns similar to those observed experimentally.
Resumo:
A recent method for phase equilibria, the AGAPE method, has been used to predict activity coefficients and excess Gibbs energy for binary mixtures with good accuracy. The theory, based on a generalised London potential (GLP), accounts for intermolecular attractive forces. Unlike existing prediction methods, for example UNIFAC, the AGAPE method uses only information derived from accessible experimental data and molecular information for pure components. Presently, the AGAPE method has some limitations, namely that the mixtures must consist of small, non-polar compounds with no hydrogen bonding, at low moderate pressures and at conditions below the critical conditions of the components. Distinction between vapour-liquid equilibria and gas-liquid solubility is rather arbitrary and it seems reasonable to extend these ideas to solubility. The AGAPE model uses a molecular lattice-based mixing rule. By judicious use of computer programs a methodology was created to examine a body of experimental gas-liquid solubility data for gases such as carbon dioxide, propane, n-butane or sulphur hexafluoride which all have critical temperatures a little above 298 K dissolved in benzene, cyclo-hexane and methanol. Within this methodology the value of the GLP as an ab initio combining rule for such solutes in very dilute solutions in a variety of liquids has been tested. Using the GLP as a mixing rule involves the computation of rotationally averaged interactions between the constituent atoms, and new calculations have had to be made to discover the magnitude of the unlike pair interactions. These numbers have been seen as significant in their own right in the context of the behaviour of infinitely-dilute solutions. A method for extending this treatment to "permanent" gases has also been developed. The findings from the GLP method and from the more general AGAPE approach have been examined in the context of other models for gas-liquid solubility, both "classical" and contemporary, in particular those derived from equations-of-state methods and from reference solvent methods.
Resumo:
A method has been constructed for the solution of a wide range of chemical plant simulation models including differential equations and optimization. Double orthogonal collocation on finite elements is applied to convert the model into an NLP problem that is solved either by the VF 13AD package based on successive quadratic programming, or by the GRG2 package, based on the generalized reduced gradient method. This approach is termed simultaneous optimization and solution strategy. The objective functional can contain integral terms. The state and control variables can have time delays. Equalities and inequalities containing state and control variables can be included into the model as well as algebraic equations and inequalities. The maximum number of independent variables is 2. Problems containing 3 independent variables can be transformed into problems having 2 independent variables using finite differencing. The maximum number of NLP variables and constraints is 1500. The method is also suitable for solving ordinary and partial differential equations. The state functions are approximated by a linear combination of Lagrange interpolation polynomials. The control function can either be approximated by a linear combination of Lagrange interpolation polynomials or by a piecewise constant function over finite elements. The number of internal collocation points can vary by finite elements. The residual error is evaluated at arbitrarily chosen equidistant grid-points, thus enabling the user to check the accuracy of the solution between collocation points, where the solution is exact. The solution functions can be tabulated. There is an option to use control vector parameterization to solve optimization problems containing initial value ordinary differential equations. When there are many differential equations or the upper integration limit should be selected optimally then this approach should be used. The portability of the package has been addressed converting the package from V AX FORTRAN 77 into IBM PC FORTRAN 77 and into SUN SPARC 2000 FORTRAN 77. Computer runs have shown that the method can reproduce optimization problems published in the literature. The GRG2 and the VF I 3AD packages, integrated into the optimization package, proved to be robust and reliable. The package contains an executive module, a module performing control vector parameterization and 2 nonlinear problem solver modules, GRG2 and VF I 3AD. There is a stand-alone module that converts the differential-algebraic optimization problem into a nonlinear programming problem.
Resumo:
This thesis describes the design and implementation of a new dynamic simulator called DASP. It is a computer program package written in standard Fortran 77 for the dynamic analysis and simulation of chemical plants. Its main uses include the investigation of a plant's response to disturbances, the determination of the optimal ranges and sensitivities of controller settings and the simulation of the startup and shutdown of chemical plants. The design and structure of the program and a number of features incorporated into it combine to make DASP an effective tool for dynamic simulation. It is an equation-oriented dynamic simulator but the model equations describing the user's problem are generated from in-built model equation library. A combination of the structuring of the model subroutines, the concept of a unit module, and the use of the connection matrix of the problem given by the user have been exploited to achieve this objective. The Executive program has a structure similar to that of a CSSL-type simulator. DASP solves a system of differential equations coupled to nonlinear algebraic equations using an advanced mixed equation solver. The strategy used in formulating the model equations makes it possible to obtain the steady state solution of the problem using the same model equations. DASP can handle state and time events in an efficient way and this includes the modification of the flowsheet. DASP is highly portable and this has been demonstrated by running it on a number of computers with only trivial modifications. The program runs on a microcomputer with 640 kByte of memory. It is a semi-interactive program, with the bulk of all input data given in pre-prepared data files with communication with the user is via an interactive terminal. Using the features in-built in the package, the user can view or modify the values of any input data, variables and parameters in the model, and modify the structure of the flowsheet of the problem during a simulation session. The program has been demonstrated and verified using a number of example problems.
Resumo:
Physically based distributed models of catchment hydrology are likely to be made available as engineering tools in the near future. Although these models are based on theoretically acceptable equations of continuity, there are still limitations in the present modelling strategy. Of interest to this thesis are the current modelling assumptions made concerning the effects of soil spatial variability, including formations producing distinct zones of preferential flow. The thesis contains a review of current physically based modelling strategies and a field based assessment of soil spatial variability. In order to investigate the effects of soil nonuniformity a fully three dimensional model of variability saturated flow in porous media is developed. The model is based on a Galerkin finite element approximation to Richards equation. Accessibility to a vector processor permits numerical solutions on grids containing several thousand node points. The model is applied to a single hillslope segment under various degrees of soil spatial variability. Such variability is introduced by generating random fields of saturated hydraulic conductivity using the turning bands method. Similar experiments are performed under conditions of preferred soil moisture movement. The results show that the influence of soil variability on subsurface flow may be less significant than suggested in the literature, due to the integrating effects of three dimensional flow. Under conditions of widespread infiltration excess runoff, the results indicate a greater significance of soil nonuniformity. The recognition of zones of preferential flow is also shown to be an important factor in accurate rainfall-runoff modelling. Using the results of various fields of soil variability, experiments are carried out to assess the validity of the commonly used concept of `effective parameters'. The results of these experiments suggest that such a concept may be valid in modelling subsurface flow. However, the effective parameter is observed to be event dependent when the dominating mechanism is infiltration excess runoff.
Resumo:
A Cauchy problem for general elliptic second-order linear partial differential equations in which the Dirichlet data in H½(?1 ? ?3) is assumed available on a larger part of the boundary ? of the bounded domain O than the boundary portion ?1 on which the Neumann data is prescribed, is investigated using a conjugate gradient method. We obtain an approximation to the solution of the Cauchy problem by minimizing a certain discrete functional and interpolating using the finite diference or boundary element method. The minimization involves solving equations obtained by discretising mixed boundary value problems for the same operator and its adjoint. It is proved that the solution of the discretised optimization problem converges to the continuous one, as the mesh size tends to zero. Numerical results are presented and discussed.