992 resultados para Diatoms Spatial gradients
Resumo:
Since the early days of functional magnetic resonance imaging (fMRI), retinotopic mapping emerged as a powerful and widely-accepted tool, allowing the identification of individual visual cortical fields and furthering the study of visual processing. In contrast, tonotopic mapping in auditory cortex proved more challenging primarily because of the smaller size of auditory cortical fields. The spatial resolution capabilities of fMRI have since advanced, and recent reports from our labs and several others demonstrate the reliability of tonotopic mapping in human auditory cortex. Here we review the wide range of stimulus procedures and analysis methods that have been used to successfully map tonotopy in human auditory cortex. We point out that recent studies provide a remarkably consistent view of human tonotopic organisation, although the interpretation of the maps continues to vary. In particular, there remains controversy over the exact orientation of the primary gradients with respect to Heschl's gyrus, which leads to different predictions about the location of human A1, R, and surrounding fields. We discuss the development of this debate and argue that literature is converging towards an interpretation that core fields A1 and R fold across the rostral and caudal banks of Heschl's gyrus, with tonotopic gradients laid out in a distinctive V-shaped manner. This suggests an organisation that is largely homologous with non-human primates. This article is part of a Special Issue entitled Human Auditory Neuroimaging.
Resumo:
Information underlying analyses of coffee fertilization systems should consider both the soil and the nutritional status of plants. This study investigated the spatial relationship between phosphorus (P) levels in coffee plant tissues and soil chemical and physical properties. The study was performed using two arabica and one canephora coffee variety. Sampling grids were established in the areas, and the points georeferenced. The assessed properties of the soil were levels of available phosphorus (P-Mehlich), remaining phosphorus (P-rem) and particle size, and of the plant tissue, phosphorus levels (foliar P). The data were subjected to descriptive statistical analysis, correlation analysis, cluster analysis, and probability tests. Geostatistical and trend analyses were only performed for pairs of variables with significant linear correlation. The spatial variability for foliar P content was high for the variety Catuai and medium for the other evaluated plants. Unlike P-Mehlich, the variability in P-rem of the soil indicated the nutritional status of this nutrient in the plant.
Resumo:
The present research deals with an application of artificial neural networks for multitask learning from spatial environmental data. The real case study (sediments contamination of Geneva Lake) consists of 8 pollutants. There are different relationships between these variables, from linear correlations to strong nonlinear dependencies. The main idea is to construct a subsets of pollutants which can be efficiently modeled together within the multitask framework. The proposed two-step approach is based on: 1) the criterion of nonlinear predictability of each variable ?k? by analyzing all possible models composed from the rest of the variables by using a General Regression Neural Network (GRNN) as a model; 2) a multitask learning of the best model using multilayer perceptron and spatial predictions. The results of the study are analyzed using both machine learning and geostatistical tools.
Resumo:
Temperature and velocity correlation functions in a fluid subjected to conditions creating both a temperature and a velocity gradient are computed up to second order in the gradients. Temperature and velocity fluctuations are coupled due to convection and viscous heating. When the viscosity goes to infinity one gets the temperature correlation function for a solid under a temperature gradient, which contains a long-ranged contribution, quadratic in the temperature gradient. The velocity correlation function also exhibits long-range behavior. In a particular case its equilibrium term is diagonal whereas the nonequilibrium correction contains nondiagonal terms.
Resumo:
1. The environment of parasites is determined largely by their hosts. Variation in host quality, abundance and spatial distribution affects the balance between selection within hosts and gene flow between hosts, and this should determine the evolution of a parasite's host-range and its propensity to locally adapt and speciate. 2. We investigated the relationship between host spatial distribution and (1) parasite host range, (2) parasite mobility and (3) parasite geographical range, in a comparative study of a major group of avian ectoparasites, the birds fleas belonging to the Ceratophyllidae (Siphonaptera). 3. Flea species parasitizing colonial birds had narrower host ranges than those infesting territorial nesters or birds with an intermediate level of nest aggregation. 4. The potential mobility and geographical ranges of fleas decreased with increasing level of aggregation of their hosts and increased with the fleas' host ranges. 5. Birds with aggregated nest distribution harboured more flea species mainly due to a larger number of specialists than solitarily nesting hosts. 6. These results emphasize the importance of host spatial distribution for the evolution of specialization, and for local adaptation and speciation in Ceratophyllid bird fleas.
Resumo:
Les instabilités engendrées par des gradients de densité interviennent dans une variété d'écoulements. Un exemple est celui de la séquestration géologique du dioxyde de carbone en milieux poreux. Ce gaz est injecté à haute pression dans des aquifères salines et profondes. La différence de densité entre la saumure saturée en CO2 dissous et la saumure environnante induit des courants favorables qui le transportent vers les couches géologiques profondes. Les gradients de densité peuvent aussi être la cause du transport indésirable de matières toxiques, ce qui peut éventuellement conduire à la pollution des sols et des eaux. La gamme d'échelles intervenant dans ce type de phénomènes est très large. Elle s'étend de l'échelle poreuse où les phénomènes de croissance des instabilités s'opèrent, jusqu'à l'échelle des aquifères à laquelle interviennent les phénomènes à temps long. Une reproduction fiable de la physique par la simulation numérique demeure donc un défi en raison du caractère multi-échelles aussi bien au niveau spatial et temporel de ces phénomènes. Il requiert donc le développement d'algorithmes performants et l'utilisation d'outils de calculs modernes. En conjugaison avec les méthodes de résolution itératives, les méthodes multi-échelles permettent de résoudre les grands systèmes d'équations algébriques de manière efficace. Ces méthodes ont été introduites comme méthodes d'upscaling et de downscaling pour la simulation d'écoulements en milieux poreux afin de traiter de fortes hétérogénéités du champ de perméabilité. Le principe repose sur l'utilisation parallèle de deux maillages, le premier est choisi en fonction de la résolution du champ de perméabilité (grille fine), alors que le second (grille grossière) est utilisé pour approximer le problème fin à moindre coût. La qualité de la solution multi-échelles peut être améliorée de manière itérative pour empêcher des erreurs trop importantes si le champ de perméabilité est complexe. Les méthodes adaptatives qui restreignent les procédures de mise à jour aux régions à forts gradients permettent de limiter les coûts de calculs additionnels. Dans le cas d'instabilités induites par des gradients de densité, l'échelle des phénomènes varie au cours du temps. En conséquence, des méthodes multi-échelles adaptatives sont requises pour tenir compte de cette dynamique. L'objectif de cette thèse est de développer des algorithmes multi-échelles adaptatifs et efficaces pour la simulation des instabilités induites par des gradients de densité. Pour cela, nous nous basons sur la méthode des volumes finis multi-échelles (MsFV) qui offre l'avantage de résoudre les phénomènes de transport tout en conservant la masse de manière exacte. Dans la première partie, nous pouvons démontrer que les approximations de la méthode MsFV engendrent des phénomènes de digitation non-physiques dont la suppression requiert des opérations de correction itératives. Les coûts de calculs additionnels de ces opérations peuvent toutefois être compensés par des méthodes adaptatives. Nous proposons aussi l'utilisation de la méthode MsFV comme méthode de downscaling: la grille grossière étant utilisée dans les zones où l'écoulement est relativement homogène alors que la grille plus fine est utilisée pour résoudre les forts gradients. Dans la seconde partie, la méthode multi-échelle est étendue à un nombre arbitraire de niveaux. Nous prouvons que la méthode généralisée est performante pour la résolution de grands systèmes d'équations algébriques. Dans la dernière partie, nous focalisons notre étude sur les échelles qui déterminent l'évolution des instabilités engendrées par des gradients de densité. L'identification de la structure locale ainsi que globale de l'écoulement permet de procéder à un upscaling des instabilités à temps long alors que les structures à petite échelle sont conservées lors du déclenchement de l'instabilité. Les résultats présentés dans ce travail permettent d'étendre les connaissances des méthodes MsFV et offrent des formulations multi-échelles efficaces pour la simulation des instabilités engendrées par des gradients de densité. - Density-driven instabilities in porous media are of interest for a wide range of applications, for instance, for geological sequestration of CO2, during which CO2 is injected at high pressure into deep saline aquifers. Due to the density difference between the C02-saturated brine and the surrounding brine, a downward migration of CO2 into deeper regions, where the risk of leakage is reduced, takes place. Similarly, undesired spontaneous mobilization of potentially hazardous substances that might endanger groundwater quality can be triggered by density differences. Over the last years, these effects have been investigated with the help of numerical groundwater models. Major challenges in simulating density-driven instabilities arise from the different scales of interest involved, i.e., the scale at which instabilities are triggered and the aquifer scale over which long-term processes take place. An accurate numerical reproduction is possible, only if the finest scale is captured. For large aquifers, this leads to problems with a large number of unknowns. Advanced numerical methods are required to efficiently solve these problems with today's available computational resources. Beside efficient iterative solvers, multiscale methods are available to solve large numerical systems. Originally, multiscale methods have been developed as upscaling-downscaling techniques to resolve strong permeability contrasts. In this case, two static grids are used: one is chosen with respect to the resolution of the permeability field (fine grid); the other (coarse grid) is used to approximate the fine-scale problem at low computational costs. The quality of the multiscale solution can be iteratively improved to avoid large errors in case of complex permeability structures. Adaptive formulations, which restrict the iterative update to domains with large gradients, enable limiting the additional computational costs of the iterations. In case of density-driven instabilities, additional spatial scales appear which change with time. Flexible adaptive methods are required to account for these emerging dynamic scales. The objective of this work is to develop an adaptive multiscale formulation for the efficient and accurate simulation of density-driven instabilities. We consider the Multiscale Finite-Volume (MsFV) method, which is well suited for simulations including the solution of transport problems as it guarantees a conservative velocity field. In the first part of this thesis, we investigate the applicability of the standard MsFV method to density- driven flow problems. We demonstrate that approximations in MsFV may trigger unphysical fingers and iterative corrections are necessary. Adaptive formulations (e.g., limiting a refined solution to domains with large concentration gradients where fingers form) can be used to balance the extra costs. We also propose to use the MsFV method as downscaling technique: the coarse discretization is used in areas without significant change in the flow field whereas the problem is refined in the zones of interest. This enables accounting for the dynamic change in scales of density-driven instabilities. In the second part of the thesis the MsFV algorithm, which originally employs one coarse level, is extended to an arbitrary number of coarse levels. We prove that this keeps the MsFV method efficient for problems with a large number of unknowns. In the last part of this thesis, we focus on the scales that control the evolution of density fingers. The identification of local and global flow patterns allows a coarse description at late times while conserving fine-scale details during onset stage. Results presented in this work advance the understanding of the Multiscale Finite-Volume method and offer efficient dynamic multiscale formulations to simulate density-driven instabilities. - Les nappes phréatiques caractérisées par des structures poreuses et des fractures très perméables représentent un intérêt particulier pour les hydrogéologues et ingénieurs environnementaux. Dans ces milieux, une large variété d'écoulements peut être observée. Les plus communs sont le transport de contaminants par les eaux souterraines, le transport réactif ou l'écoulement simultané de plusieurs phases non miscibles, comme le pétrole et l'eau. L'échelle qui caractérise ces écoulements est définie par l'interaction de l'hétérogénéité géologique et des processus physiques. Un fluide au repos dans l'espace interstitiel d'un milieu poreux peut être déstabilisé par des gradients de densité. Ils peuvent être induits par des changements locaux de température ou par dissolution d'un composé chimique. Les instabilités engendrées par des gradients de densité revêtent un intérêt particulier puisque qu'elles peuvent éventuellement compromettre la qualité des eaux. Un exemple frappant est la salinisation de l'eau douce dans les nappes phréatiques par pénétration d'eau salée plus dense dans les régions profondes. Dans le cas des écoulements gouvernés par les gradients de densité, les échelles caractéristiques de l'écoulement s'étendent de l'échelle poreuse où les phénomènes de croissance des instabilités s'opèrent, jusqu'à l'échelle des aquifères sur laquelle interviennent les phénomènes à temps long. Etant donné que les investigations in-situ sont pratiquement impossibles, les modèles numériques sont utilisés pour prédire et évaluer les risques liés aux instabilités engendrées par les gradients de densité. Une description correcte de ces phénomènes repose sur la description de toutes les échelles de l'écoulement dont la gamme peut s'étendre sur huit à dix ordres de grandeur dans le cas de grands aquifères. Il en résulte des problèmes numériques de grande taille qui sont très couteux à résoudre. Des schémas numériques sophistiqués sont donc nécessaires pour effectuer des simulations précises d'instabilités hydro-dynamiques à grande échelle. Dans ce travail, nous présentons différentes méthodes numériques qui permettent de simuler efficacement et avec précision les instabilités dues aux gradients de densité. Ces nouvelles méthodes sont basées sur les volumes finis multi-échelles. L'idée est de projeter le problème original à une échelle plus grande où il est moins coûteux à résoudre puis de relever la solution grossière vers l'échelle de départ. Cette technique est particulièrement adaptée pour résoudre des problèmes où une large gamme d'échelle intervient et évolue de manière spatio-temporelle. Ceci permet de réduire les coûts de calculs en limitant la description détaillée du problème aux régions qui contiennent un front de concentration mobile. Les aboutissements sont illustrés par la simulation de phénomènes tels que l'intrusion d'eau salée ou la séquestration de dioxyde de carbone.
Resumo:
We analyze the light-scattering spectrum of a suspension in a viscoelastic fluid under density and velocity gradients. When a density gradient is present, the dynamic structure factor exhibits universality in the sense that its expression depends only on the reduced frequency and the reduced density gradient. For a velocity gradient, however, the universality breaks down. In this last case we have found a transition point from one to three characteristic frequencies in the spectrum, which is governed by the value of the external gradient. The presence of the viscoelastic time scales introduces a shift in the ``critical¿¿ point.
Resumo:
Many of the most interesting questions ecologists ask lead to analyses of spatial data. Yet, perhaps confused by the large number of statistical models and fitting methods available, many ecologists seem to believe this is best left to specialists. Here, we describe the issues that need consideration when analysing spatial data and illustrate these using simulation studies. Our comparative analysis involves using methods including generalized least squares, spatial filters, wavelet revised models, conditional autoregressive models and generalized additive mixed models to estimate regression coefficients from synthetic but realistic data sets, including some which violate standard regression assumptions. We assess the performance of each method using two measures and using statistical error rates for model selection. Methods that performed well included generalized least squares family of models and a Bayesian implementation of the conditional auto-regressive model. Ordinary least squares also performed adequately in the absence of model selection, but had poorly controlled Type I error rates and so did not show the improvements in performance under model selection when using the above methods. Removing large-scale spatial trends in the response led to poor performance. These are empirical results; hence extrapolation of these findings to other situations should be performed cautiously. Nevertheless, our simulation-based approach provides much stronger evidence for comparative analysis than assessments based on single or small numbers of data sets, and should be considered a necessary foundation for statements of this type in future.
Resumo:
In this paper, we develop a data-driven methodology to characterize the likelihood of orographic precipitation enhancement using sequences of weather radar images and a digital elevation model (DEM). Geographical locations with topographic characteristics favorable to enforce repeatable and persistent orographic precipitation such as stationary cells, upslope rainfall enhancement, and repeated convective initiation are detected by analyzing the spatial distribution of a set of precipitation cells extracted from radar imagery. Topographic features such as terrain convexity and gradients computed from the DEM at multiple spatial scales as well as velocity fields estimated from sequences of weather radar images are used as explanatory factors to describe the occurrence of localized precipitation enhancement. The latter is represented as a binary process by defining a threshold on the number of cell occurrences at particular locations. Both two-class and one-class support vector machine classifiers are tested to separate the presumed orographic cells from the nonorographic ones in the space of contributing topographic and flow features. Site-based validation is carried out to estimate realistic generalization skills of the obtained spatial prediction models. Due to the high class separability, the decision function of the classifiers can be interpreted as a likelihood or susceptibility of orographic precipitation enhancement. The developed approach can serve as a basis for refining radar-based quantitative precipitation estimates and short-term forecasts or for generating stochastic precipitation ensembles conditioned on the local topography.
Resumo:
Epigeous termite mounds are frequently observed in pasture areas, but the processes regulating their population dynamics are poorly known. This study evaluated epigeous termite mounds in cultivated grasslands used as pastures, assessing their spatial distribution by means of geostatistics and evaluating their vitality. The study was conducted in the Cerrado biome in the municipality of Rio Brilhante, Mato Grosso do Sul, Brazil. In two pasture areas (Pasture 1 and Pasture 2), epigeous mounds (nests) were georeferenced and analyzed for height, circumference and vitality (inhabited or not). The area occupied by the mounds was calculated and termite specimens were collected for taxonomic identification. The spatial distribution pattern of the mounds was analyzed with geostatistical procedures. In both pasture areas, all epigeous mounds were built by the same species, Cornitermes cumulans. The mean number of mounds per hectare was 68 in Pasture 1 and 127 in Pasture 2, representing 0.4 and 1 % of the entire area, respectively. A large majority of the mounds were active (vitality), 91 % in Pasture 1 and 84 % in Pasture 2. A “pure nugget effect” was observed in the semivariograms of height and nest circumference in both pastures reflecting randomized spatial distribution and confirming that the distribution of termite mounds in pastures had a non-standard distribution.
Resumo:
Traditionally, the analysis of gene regulatory regions suffered from the caveat that it was restricted to artificial contexts (e.g. reporter constructs of limited size). With the advent of the BAC recombineering technique, genomic constructs can now be generated to test regulatory elements in their endogenous environment. The expression of the transcriptional repressor brinker (brk) is negatively regulated by Dpp signaling. Repression is mediated by small sequence motifs, the silencer elements (SEs), that are present in multiple copies in the regulatory region of brk. In this work, we manipulated the SEs in the brk locus. We precisely quantified the effects of the individual SEs on the Brk gradient in the wing disc by employing a 1D data extraction method, followed by the quantification of the data with reference to an internal control. We found that mutating the SEs results in an expansion of the brk expression domain. However, even after mutating all predicted SEs, repression could still be observed in regions of maximal Dpp levels. Thus, our data point to the presence of additional, low affinity binding sites in the brk locus.
Resumo:
The spatial correlation between soil properties and weeds is relevant in agronomic and environmental terms. The analysis of this correlation is crucial for the interpretation of its meaning, for influencing factors such as dispersal mechanisms, seed production and survival, and the range of influence of soil management techniques. This study aimed to evaluate the spatial correlation between the physical properties of soil and weeds in no-tillage (NT) and conventional tillage (CT) systems. The following physical properties of soil and weeds were analyzed: soil bulk density, macroporosity, microporosity, total porosity, aeration capacity of soil matrix, soil water content at field capacity, weed shoot biomass, weed density, Commelina benghalensis density, and Bidens pilosa density. Generally, the ranges of the spatial correlations were higher in NT than in CT. The cross-variograms showed that many variables have a structure of combined spatial variation and can therefore be mapped from one another by co-kriging. This combined variation also allows inferences about the physical and biological meanings of the study variables. Results also showed that soil management systems influence the spatial dependence structure significantly.
Resumo:
Red blood cell (RBC) membrane fluctuations provide important insights into cell states. We present a spatial analysis of red blood cell membrane fluctuations by using digital holographic microscopy (DHM). This interferometric and dye-free technique, possessing nanometric axial and microsecond temporal sensitivities enables to measure cell membrane fluctuations (CMF) on the whole cell surface. DHM acquisition is combined with a model which allows extracting the membrane fluctuation amplitude, while taking into account cell membrane topology. Uneven distribution of CMF amplitudes over the RBC surface is observed, showing maximal values in a ring corresponding to the highest points on the RBC torus as well as in some scattered areas in the inner region of the RBC. CMF amplitudes of 35.9+/-8.9 nm and 4.7+/-0.5 nm (averaged over the cell surface) were determined for normal and ethanol-fixed RBCs, respectively.
Resumo:
Brazilian soils have natural high chemical variability; thus, apparent electrical conductivity (ECa) can assist interpretation of crop yield variations. We aimed to select soil chemical properties with the best linear and spatial correlations to explain ECa variation in the soil using a Profiler sensor (EMP-400). The study was carried out in Sidrolândia, MS, Brazil. We analyzed the following variables: electrical conductivity - EC (2, 7, and 15 kHz), organic matter, available K, base saturation, and cation exchange capacity (CEC). Soil ECa was measured with the aid of an all-terrain vehicle, which crossed the entire area in strips spaced at 0.45 m. Soil samples were collected at the 0-20 cm depth with a total of 36 samples within about 70 ha. Classical descriptive analysis was applied to each property via SAS software, and GS+ for spatial dependence analysis. The equipment was able to simultaneously detect ECa at the different frequencies. It was also possible to establish site-specific management zones through analysis of correlation with chemical properties. We observed that CEC was the property that had the best correlation with ECa at 15 kHz.
Resumo:
The assessment of spatial uncertainty in the prediction of nutrient losses by erosion associated with landscape models is an important tool for soil conservation planning. The purpose of this study was to evaluate the spatial and local uncertainty in predicting depletion rates of soil nutrients (P, K, Ca, and Mg) by soil erosion from green and burnt sugarcane harvesting scenarios, using sequential Gaussian simulation (SGS). A regular grid with equidistant intervals of 50 m (626 points) was established in the 200-ha study area, in Tabapuã, São Paulo, Brazil. The rate of soil depletion (SD) was calculated from the relation between the nutrient concentration in the sediments and the chemical properties in the original soil for all grid points. The data were subjected to descriptive statistical and geostatistical analysis. The mean SD rate for all nutrients was higher in the slash-and-burn than the green cane harvest scenario (Student’s t-test, p<0.05). In both scenarios, nutrient loss followed the order: Ca>Mg>K>P. The SD rate was highest in areas with greater slope. Lower uncertainties were associated to the areas with higher SD and steeper slopes. Spatial uncertainties were highest for areas of transition between concave and convex landforms.