993 resultados para Dexamethasone suppression test
Resumo:
A novel monolithically integrated Michelson interferometer using intersecting twin-contact semiconductor optical amplifiers is proposed and implemented whereby the two arms are gain imbalanced to give enhanced noise suppression. Experimental OSNR improvements of 8.4 dB for pulses with durations 8 ps and by default ER of 14 dB are demonstrated for low driving currents of between 25 and 30 mA. This is believed to be the smallest Michelson interferometer to date.
Resumo:
Negative feedback is common in biological processes and can increase a system's stability to internal and external perturbations. But at the molecular level, control loops always involve signalling steps with finite rates for random births and deaths of individual molecules. Here we show, by developing mathematical tools that merge control and information theory with physical chemistry, that seemingly mild constraints on these rates place severe limits on the ability to suppress molecular fluctuations. Specifically, the minimum standard deviation in abundances decreases with the quartic root of the number of signalling events, making it extremely expensive to increase accuracy. Our results are formulated in terms of experimental observables, and existing data show that cells use brute force when noise suppression is essential; for example, regulatory genes are transcribed tens of thousands of times per cell cycle. The theory challenges conventional beliefs about biochemical accuracy and presents an approach to the rigorous analysis of poorly characterized biological systems.
Resumo:
Understanding the regulatory mechanisms that are responsible for an organism's response to environmental change is an important issue in molecular biology. A first and important step towards this goal is to detect genes whose expression levels are affected by altered external conditions. A range of methods to test for differential gene expression, both in static as well as in time-course experiments, have been proposed. While these tests answer the question whether a gene is differentially expressed, they do not explicitly address the question when a gene is differentially expressed, although this information may provide insights into the course and causal structure of regulatory programs. In this article, we propose a two-sample test for identifying intervals of differential gene expression in microarray time series. Our approach is based on Gaussian process regression, can deal with arbitrary numbers of replicates, and is robust with respect to outliers. We apply our algorithm to study the response of Arabidopsis thaliana genes to an infection by a fungal pathogen using a microarray time series dataset covering 30,336 gene probes at 24 observed time points. In classification experiments, our test compares favorably with existing methods and provides additional insights into time-dependent differential expression.