885 resultados para Destruction


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Topical photodynamic therapy is used for a variety of malignant and pre-malignant skin disorders, including Bowen's Disease and Superficial Basal Cell Carcinoma. A haem precursor, typically 5-aminolevulinic acid (ALA), acting as a prodrug, is absorbed and converted by the haem biosynthetic pathway to photoactive protoprophyrin IX (PpIX), which accumulates preferentially in rapidly dividing
cells. Cell destruction occurs when PpIx is activated by an intense light source of appropriate wavelength. Topical delivery of ALA avoids the prolonged photosensitivity reactions associated with systemic administration of photosensitisers but its clinical utility is influenced by the tissue penetration characteristics of the drug, its ease of application and the stability of the active agent in the applied dose. This review, therefore, focuses on drug delivery applications for topical, ALA-based PDT. Issues considered in detail include physical and chemical enhancement strategies for tissue penetration of ALA and subsequent intracellular accumulation of PpIX, together with formulation strategies and drug delivery design solutions appropriate to various clinical applications. The fundamental aspects of drug diffusion in
relation to the physicochemical properties of ALA are reviewed and specific consideration is given to the degradation pathways of ALA in formulated systems that, in turn, influence the design of stable topical formulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The number of red blood cells is normally tightly regulated by a classic homeostatic mechanism based on oxygen sensing in the kidney. Decreased oxygen delivery resulting from anemia induces the production of erythropoietin, which increases red cell production and hence oxygen delivery. Investigations of erythropoietin regulation identified the transcription factor hypoxia-inducible factor (HIF). HIF is now recognized as being a key regulator of genes that function in a comprehensive range of processes besides erythropoiesis, including energy metabolism and angiogenesis. HIF itself is regulated through the -subunit, which is hydroxylated in the presence of oxygen by a family of three prolyl hydroxylase domain proteins (PHDs)/HIF prolyl hydroxylases/egg-laying-defective nine enzymes. Hydroxylation allows capture by the von Hippel–Lindau tumor suppressor gene product, ubiquitination, and destruction by the proteasome. Here we describe an inherited mutation in a mammalian PHD enzyme. We show that this mutation in PHD2 results in a marked decrease in enzyme activity and is associated with familial erythrocytosis, identifying a previously unrecognized cause of this condition. Our findings indicate that PHD2 is critical for normal regulation of HIF in humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alpha-tocopherol (aT), the predominant form of vitamin E in mammals, is thought to prevent oxidation of polyunsaturated fatty acids. In the lung, aT is perceived to be accumulated in alveolar type II cells and secreted together with surfactant into the epithelial lining fluid. Conventionally, determination of aT and related compounds requires extraction with organic solvents. This study describes a new method to determine and image the distribution of aT and related compounds within cells and tissue sections using the light-scattering technique of Raman microscopy to enable high spatial as well as spectral resolution. This study compared the nondestructive analysis by Raman microscopy of vitamin E, in particular aT, in biological samples with data obtained using conventional HPLC analysis. Raman spectra were acquired at spatial resolutions of 2-0.8 microm. Multivariate analysis techniques were used for analyses and construction of corresponding maps showing the distribution of aT, alpha-tocopherol quinone (aTQ), and other constituents (hemes, proteins, DNA, and surfactant lipids). A combination of images enabled identification of colocalized constituents (heme/aTQ and aT/surfactant lipids). Our data demonstrate the ability of Raman microscopy to discriminate between different tocopherols and oxidation products in biological specimens without sample destruction. By enabling the visualization of lipid-protein interactions, Raman microscopy offers a novel method of investigating biological characterization of lipid-soluble compounds, including those that may be embedded in biological membranes such as aT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cooperatives have a long historical experience in the Spanish economy and have demonstrated their ability to compete against traditional firms in the market. To maintain this capability, while taking advantage of the competitive advantages associated with their idiosyncrasies as social economy enterprises, they should take into consideration that the economy is increasingly globalized and increasingly knowledge-based, especially with regards to technological content. As a consequence, the innovative capacity appears to be a key aspect in order to be able to challenge competitors. This article characterizes the innovative behavior of cooperatives in the region of Castile and Leon and analyses the internal and external factors affecting their innovative performance, based on data from a survey of 581 cooperatives. The results of the empirical analysis, which is performed by multivariate binary logistic regression on various types of innovation, lead us to identify the size of the organizations, the existence of planning, the R & D activities and the human capital as the main determining factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability of tumour cells to avoid immune destruction (immune escape) and their acquired resistance to anti-cancer drugs constitute important barriers to the successful management of cancer. The interaction between specific molecules on the surface of tumour cells with their corresponding receptors on immune effector cells can result in inhibition of these effector cells, consequently allowing tumour cells to evade the host’s anti-tumour immune response. The interaction of the Programmed Death Ligand 1 (PD-L1) on the surface of tumour cells with the Programmed Death-1 (PD-1) receptor on cytotoxic T lymphocytes leads to inactivation of these immune effectors, and is a specific example of an immune escape mechanism tumour cells use to avoid immune destruction. Clinically, antibodies capable of blocking the PD-1/PD-L1 interaction have demonstrated significant therapeutic benefit, and are currently being used to help bolster patients’ immune response against malignant cells in a variety of cancer types. Here we show that the PD-1/PD-L1 interaction also leads to tumour cell resistance to conventional chemotherapeutic agents. Incubation of PD-L1-expressing human and mouse tumour cells with PD-1-expressing Jurkat T cells or purified recombinant PD-1 resulted in tumour cell resistance to doxorubicin and docetaxel. Interference with the PD-1/PD-L1 interaction using blocking anti-PD-1 or anti-PD-L1 antibody or shRNA-mediated gene silencing resulted in attenuation of PD-1/PD-L1-mediated drug resistance. Moreover, inhibition of the PD-1/PD-L1 signalling axis using anti-PD-1 antibody enhanced the effect of doxorubicin chemotherapy to inhibit 4T1 tumour cell metastasis in an in vivo mouse model of mammary carcinoma. These findings indicate that blockade of the PD-1/PD-L1 axis may be a useful approach to immunosensitize and chemosensitize tumours in cancer patients and provide a rationale for the use of anti-PD-1/PD-L1 antibodies as adjuvants to chemotherapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Familial expansile osteolysis (FEO) is a rare disorder causing bone dysplasia. The clinical features of FEO include early-onset hearing loss, tooth destruction, and progressive lytic expansion within limb bones causing pain, fracture, and deformity. An 18-bp duplication in the first exon of the TNFRSF11A gene encoding RANK has been previously identified in four FEO pedigrees. Despite having the identical mutation, phenotypic variations among affected individuals of the same and different pedigrees were noted. Another 18-bp duplication, one base proximal to the duplication previously reported, was subsequently found in two unrelated FEO patients. Finally, mutations overlapping with the mutations found in the FEO pedigrees have been found in ESH and early-onset PDB pedigrees. An Iranian FEO pedigree that contains six affected individuals dispersed in three generations has previously been introduced; here, the clinical features of the proband are reported in greater detail, and the genetic defect of the pedigree is presented. Direct sequencing of the entire coding region and upstream and downstream noncoding regions of TNFRSF11A in her DNA revealed the same 18-bp duplication mutation as previously found in the four FEO pedigrees. Additionally, eight sequence variations as compared to the TNFRSF11A reference sequence were identified, and a haplotype linked to the mutation based on these variations was defined. Although the mutation in the Iranian and four of the previously described FEO pedigrees was the same, haplotypes based on the intragenic SNPs suggest that the mutations do not share a common descent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sputtered silicon is investigated as a bonding layer for transfer of pre-processed silicon layers to various insulating substrates. Although the material appears suitable for low temperature processing, previous work has shown that gas trapped in the pores of the sputtered material is released at temperatures above 350 degrees C and further increases of temperature lead to destruction of any bonded interface. Pre-annealing at 1000 degrees C before bonding drives out gas and/or seals the surface, but for device applications where processing temperatures must be kept below about 300 degrees C, this technique cannot be used. In the current work, we have investigated the effect of excimer laser-annealing to heat the sputtered silicon surface to high temperature whilst minimising heating of the underlying substrate. Temperature profile simulations are presented and the results of RBS, TEM and AFM used to characterise the annealed layers. The results verify that gases are present in the sub-surface layers and suggest that while sealing of the surface is important for suppression of the out-diffusion of gases, immediate surface gas removal may also play a role. The laser-annealing technique appears to be an effective method of treating sputtered silicon, yielding a low roughness surface suitable for wafer bonding, thermal splitting and layer transfer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leukocyte-derived matrix metalloproteinases (MMP) are implicated in the tissue destruction characteristic of tuberculosis (TB). The contribution of lung stromal cells to MMP activity in TB is unknown. Oncostatin M (OSM) is an important stimulus to extrapulmonary stromal MMP induction, but its role in regulation of pulmonary MMP secretion or pathophysiology of TB is unknown. We investigated OSM secretion from Mycobacterium tuberculosis (Mtb)-infected human monocytes/macrophages and the networking effects of such OSM on lung fibroblast MMP secretion. Mtb increased monocyte OSM secretion dose dependently in vitro. In vivo tuberculous granulomas immunostained positively for OSM. Further, conditioned media from Mtb-infected monocytes (CoMTb) induced monocyte OSM secretion (670 ± 55 versus 166 ± 14 pg/mL in controls), implicating an autocrine loop. Mtb-induced OSM secretion was prostaglandin (PG) sensitive, and required activation of surface G-protein coupled receptors. OSM induction was ERK MAP kinase dependent, p38-requiring but JNK-independent. OSM synergized with TNF-, a key cytokine in TB granuloma formation, to stimulate pulmonary fibroblast MMP-1/-3 secretion, while suppressing secretion of tissue inhibitors of metalloproteinases-1/-2. In summary, Mtb infection of monocytes results in PG-dependent OSM secretion, which synergizes with TNF- to drive functionally unopposed fibroblast MMP-1/-3 secretion, demonstrating a previously unrecognized role for OSM in TB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tuberculosis (TB) pleural disease is complicated by extensive tissue destruction. Matrix metalloproteinase (MMP)-1 and -9 are implicated in immunopathology of pulmonary and central nervous system TB. There are few data on MMP activity in TB pleurisy. The present study investigated MMP-1, -2 and -9 and their specific inhibitors (tissue inhibitor of metalloproteinase (TIMP)-1 and -2) in tuberculous effusions, and correlated these with clinical and histopathological features. Clinical data, routine blood tests, and pleural fluid/biopsy material were obtained from 89 patients presenting with pleural effusions in a TB-endemic area. MMP-1, -2 and -9 were measured by zymography or western blot, and TIMP-1 and -2 by ELISA. Pleural biopsies were examined microscopically, cultured for acid–alcohol fast bacilli and immunostained for MMP-9. Tuberculous pleural effusions contained the highest concentrations of MMP-9 compared with malignant effusions or heart failure transudates. MMP-9 concentrations were highest in effusions from patients with granulomatous biopsies: median (interquartile range) 108 (61–218) pg·mL-1 versus 43 (12–83) pg·mL-1 in those with nongranulomatous pleural biopsies. MMP-1 and -2 were not upregulated in tuberculous pleural fluid. The ratio of MMP-9:TIMP-1 was significantly higher in TB effusions. Tuberculous pleurisy is characterised by a specific pattern of matrix metalloproteinase-9 upregulation, correlating with the presence of granulomas and suggesting a specific role for matrix metalloproteinase-9 in inflammatory responses in tuberculous pleural disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photodynamic therapy (PDT) is a medical treatment in which a combination of a photosensitising drug and visible light causes destruction of selected cells. Due to the lack of true selectivity of preformed photosensitisers for neoplastic tissue and their high molecular weights, PDT of superficial skin lesions has traditionally been mediated by topical application of the porphyrin precursor 5-aminolevulinic acid (ALA). Objective: This article aims to review the traditional formulation-based approaches taken to topical delivery of ALA and discusses the more innovative strategies investigated for enhancement of PDT mediated by topical application of ALA and preformed photosensitisers. Methods: All of the available published print and online literature in this area was reviewed. As drug delivery of agents used in PDT is still something of an emerging field, it was not necessary to go beyond literature from the last 30 years. Results/conclusion: PDT of neoplastic skin lesions is currently based almost exclusively on topical application of simple semisolid dosage forms containing ALA or its methyl ester. Until expiry of patents on the current market-leading products, there is unlikely to be a great incentive to engage in design and evaluation of innovative formulations for topical PDT, especially those containing the more difficult-to-deliver preformed photosensitisers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we postulate the direct relationship that exists between waste production and artistic objects; its manufacturing system, consumption, and subsequent waste. What arises in this relationship then, is another character of interest –and that will serve as a reference to compare its modus operandi with the place of artists and the arts–, in this sick world, the Diogenes. The obsessed that lives among the garbage. The absurdity of the conquest of the infinite of the illogical within the logical. The amount clouded and blinded, nothing is enjoyed, nothing is appreciated; the countless abandons its place in the memory –memorable– and there only exists a pathological accumulation, mountains of garbage, desires to hold on to vital faith of the belief of doing Something for themselves. Working just to work and building something that will not last, like a sand castle, accumulation of detritus and dust. A new logic is born, the enjoyment of diseases and emptiness, the destruction of a world without a history. «Artists of the world, abandon! You have nothing to lose but your own professions!» (Kaprow, 2007, p. 37).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chaperones are ubiquitous conserved proteins critical in stabilization of new proteins, repair/removal of defective proteins and immunodominant antigens in innate and adaptive immunity. Periodontal disease is a chronic inflammatory infection associated with infection by Porphyromonas gingivalis that culminates in the destruction of the supporting structures of the teeth. We previously reported studies of serum antibodies reactive with the human chaperone Hsp90 in gingivitis, a reversible form of gingival disease confined to the oral soft tissues. In those studies, antibodies were at their highest levels in subjects with the best oral health. We hypothesized that antibodies to the HSP90 homologue of P. gingivalis (HtpG) might be associated with protection/resistance against destructive periodontitis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In photodynamic antimicrobial chemotherapy (PACT), a combination of a sensitising drug and visible light causes selective destruction of microbial cells. The ability of light-drug combinations to kilt microorganisms has been known for over 100 years. However, it is only recently with the beginning of the search for alternative treatments for antibiotic-resistant pathogens that the phenomenon has been investigated in detail. Numerous studies have shown PACT to be highly effective in the in vitro destruction of viruses and protozoa, as well as Gram-positive and Gram-negative bacteria and fungi. Results of experimental investigations have demonstrated conclusively that both dermatomycetes and yeasts can be effectively killed by photodynamic action employing phenothiazinium, porphyrin and phthatocyanine photosensitisers. Importantly, considerable setectivity for fungi over human cells has been demonstrated, no reports of fungal resistance exist and the treatment is not associated with genotoxic or mutagenic effects to fungi or human cells. In spite of the success of cell culture investigations, only a very small number of in vivo animal. and human trials have been published. The present paper reviews the studies published to date on antifungal applications of PACT and aims to raise awareness of this area of research, which has the potential to make a significant impact in future treatment of fungal infections. (c) 2007 Elsevier GmbH. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atomic oxygen formation in a radio-frequency driven micro-atmospheric pressure plasma jet is investigated using both advanced optical diagnostics and numerical simulations of the dynamic plasma chemistry. Laser spectroscopic measurements of absolute densities of ground state atomic oxygen reveal steep gradients at the interface between the plasma core and the effluent region. Spatial profiles resolving the interelectrode gap within the core plasma indicate that volume processes dominate over surface reactions. Details of the production and destruction processes are investigated in numerical simulations benchmarked by phase-resolved optical emission spectroscopy. The main production mechanisms are electron induced and hence most efficient in the vicinity of the plasma boundary sheath, where electrons are energized. The destruction is driven through chemical heavy particle reactions. The resulting spatial profile of atomic oxygen is relatively flat. The power dependence of the atomic oxygen density obtained by the numerical simulation is in very good agreement with the laser spectroscopic measurements.