865 resultados para Design and selection


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Petroleum supply and environmental pollution issues constantly increase interest in renewable low polluting alternative fuels. Published test results show decreased pollution with similar power output and fuel consumption from Internal Combustion Engines (ICE) burning alternative fuels. More specifically, diesel engines burning biodiesel derived from plant oils and animal fats not only reduce harmful exhaust emissions but are renewable and environmentally friendly. To validate these claims and assess the feasibility of alternative fuels, independent engine dynamometer and emissions testing was performed. A testing apparatus capable of making relevant measurements was designed, built, and used to test and determine the feasibility of biodiesel. The apparatus marks the addition of a valuable testing tool to the University and provides a foundation for future experiments. This thesis will discuss the background of biodiesel, testing methods, design and function of the testing apparatus, experimental results, relevant calculations, and conclusions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Utilization of biogas can provide a source of renewable energy in both heat and power generation. Combustion of biogas in land-based gas turbines for power generation is a promising approach to reducing greenhouse gases and US dependence on foreign-source fossil fuels. Biogas is a byproduct from the decomposition of organic matter and consists primarily of CH4 and large amounts of CO2. The focus of this research was to design a combustion device and investigate the effects of increasing levels of CO2 addition to the combustion of pure CH4 with air. Using an atmospheric-pressure, swirl-stabilized dump combustor, emissions data and flame stability limitations were measured and analyzed. In particular, CO2, CO, and NOx emissions were the main focus of the combustion products. Additionally, the occurrence of lean blowout and combustion pressure oscillations, which impose significant limitations in operation ranges for actual gas turbines, was observed. Preliminary kinetic and equilibrium modeling was performed using Cantera and CEA for the CH4/CO2/Air combustion systems to analyze the effect of CO2 upon adiabatic flame temperature and emission levels. The numerical and experimental results show similar dependence of emissions on equivalence ratio, CO2 addition, inlet air temperature, and combustor residence time. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-throughput gene expression technologies such as microarrays have been utilized in a variety of scientific applications. Most of the work has been on assessing univariate associations between gene expression with clinical outcome (variable selection) or on developing classification procedures with gene expression data (supervised learning). We consider a hybrid variable selection/classification approach that is based on linear combinations of the gene expression profiles that maximize an accuracy measure summarized using the receiver operating characteristic curve. Under a specific probability model, this leads to consideration of linear discriminant functions. We incorporate an automated variable selection approach using LASSO. An equivalence between LASSO estimation with support vector machines allows for model fitting using standard software. We apply the proposed method to simulated data as well as data from a recently published prostate cancer study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Common goals in epidemiologic studies of infectious diseases include identification of the infectious agent, description of the modes of transmission and characterization of factors that influence the probability of transmission from infected to uninfected individuals. In the case of AIDS, the agent has been identified as the Human Immunodeficiency Virus (HIV), and transmission is known to occur through a variety of contact mechanisms including unprotected sexual intercourse, transfusion of infected blood products and sharing of needles in intravenous drug use. Relatively little is known about the probability of IV transmission associated with the various modes of contact, or the role that other cofactors play in promoting or suppressing transmission. Here, transmission probability refers to the probability that the virus is transmitted to a susceptible individual following exposure consisting of a series of potentially infectious contacts. The infectivity of HIV for a given route of transmission is defined to be the per contact probability of infection. Knowledge of infectivity and its relationship to other factors is important in understanding the dynamics of the AIDS epidemic and in suggesting appropriate measures to control its spread. The primary source of empirical data about infectivity comes from sexual partners of infected individuals. Partner studies consist of a series of such partnerships, usually heterosexual and monogamous, each composed of an initially infected "index case" and a partner who may or may not be infected by the time of data collection. However, because the infection times of both partners may be unknown and the history of contacts uncertain, any quantitative characterization of infectivity is extremely difficult. Thus, most statistical analyses of partner study data involve the simplifying assumption that infectivity is a constant common to all partnerships. The major objectives of this work are to describe and discuss the design and analysis of partner studies, providing a general statistical framework for investigations of infectivity and risk factors for HIV transmission. The development is largely based on three papers: Jewell and Shiboski (1990), Kim and Lagakos (1990), and Shiboski and Jewell (1992).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Short-acting agents for neuromuscular block (NMB) require frequent dosing adjustments for individual patient's needs. In this study, we verified a new closed-loop controller for mivacurium dosing in clinical trials. METHODS: Fifteen patients were studied. T1% measured with electromyography was used as input signal for the model-based controller. After induction of propofol/opiate anaesthesia, stabilization of baseline electromyography signal was awaited and a bolus of 0.3 mg kg-1 mivacurium was then administered to facilitate endotracheal intubation. Closed-loop infusion was started thereafter, targeting a neuromuscular block of 90%. Setpoint deviation, the number of manual interventions and surgeon's complaints were recorded. Drug use and its variability between and within patients were evaluated. RESULTS: Median time of closed-loop control for the 11 patients included in the data processing was 135 [89-336] min (median [range]). Four patients had to be excluded because of sensor problems. Mean absolute deviation from setpoint was 1.8 +/- 0.9 T1%. Neither manual interventions nor complaints from the surgeons were recorded. Mean necessary mivacurium infusion rate was 7.0 +/- 2.2 microg kg-1 min-1. Intrapatient variability of mean infusion rates over 30-min interval showed high differences up to a factor of 1.8 between highest and lowest requirement in the same patient. CONCLUSIONS: Neuromuscular block can precisely be controlled with mivacurium using our model-based controller. The amount of mivacurium needed to maintain T1% at defined constant levels differed largely between and within patients. Closed-loop control seems therefore advantageous to automatically maintain neuromuscular block at constant levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiolabeled sst 2 and sst 3 antagonists are better candidates for tumor targeting than agonists with comparable binding characteristics (Ginj, M.; Zhang, H.; Waser, B.; Cescato, R.; Wild, D.; Erchegyi, J.; Rivier, J.; Mäcke, H. R.; Reubi, J. C. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 16436-16441.). Because most of the neuroendocrine tumors express sst 2, we used the known antagonists acetyl- pNO 2Phe (2)- c[ dCys (3)-Tyr (7)- dTrp (8)-Lys (9)-Thr (10)-Cys (14)]- dTyr (15)-NH 2 ( 1) (Bass, R. T.; Buckwalter, B. L.; Patel, B. P.; Pausch, M. H.; Price, L. A.; Strnad, J.; Hadcock, J. R. Mol. Pharmacol. 1996, 50, 709-715. Bass, R. T.; Buckwalter, B. L.; Patel, B. P.; Pausch, M. H.; Price, L. A.; Strnad, J.; Hadcock, J. R. Mol. Pharmacol. 1997, 51, 170; Erratum.) and H-Cpa (2)- c[ dCys (3)-Tyr (7)- dTrp (8)-Lys (9)-Thr (10)-Cys (14)]-2Nal (15)-NH 2 ( 7) (Hocart, S. J.; Jain, R.; Murphy, W. A.; Taylor, J. E.; Coy, D. H. J. Med. Chem. 1999, 42, 1863-1871.) as leads for analogues with increased sst 2 binding affinity and selectivity. Among the 32 analogues reported here, DOTA- pNO 2Phe (2)- c[ dCys (3)-Tyr (7)- dAph (8)(Cbm)-Lys (9)-Thr (10)-Cys (14)- dTyr (15)-NH 2 ( 3) and DOTA-Cpa (2)- c[ dCys (3)-Aph (7)(Hor)- dAph (8)(Cbm)-Lys (9)-Thr (10)-Cys (14)]- dTyr (15)-NH 2 ( 31) had the highest sst 2 binding affinity and selectivity. All of the analogues tested kept their sst 2 antagonistic properties (i.e., did not affect calcium release in vitro and competitively antagonized the agonistic effect of [Tyr (3)]octreotide). Moreover, in an immunofluorescence-based internalization assay, the new analogues prevented sst 2 internalization induced by the sst 2 agonist [Tyr (3)]octreotide without being active by themselves. In conclusion, several analogues (in particular 3, 31, and 32) have outstanding sst 2 binding and functional antagonistic properties and, because of their DOTA moiety, are excellent candidates for in vivo targeting of sst 2-expressing cancers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large parts of the world are subjected to one or more natural hazards, such as earthquakes, tsunamis, landslides, tropical storms (hurricanes, cyclones and typhoons), costal inundation and flooding. Virtually the entire world is at risk of man-made hazards. In recent decades, rapid population growth and economic development in hazard-prone areas have greatly increased the potential of multiple hazards to cause damage and destruction of buildings, bridges, power plants, and other infrastructure; thus posing a grave danger to the community and disruption of economic and societal activities. Although an individual hazard is significant in many parts of the United States (U.S.), in certain areas more than one hazard may pose a threat to the constructed environment. In such areas, structural design and construction practices should address multiple hazards in an integrated manner to achieve structural performance that is consistent with owner expectations and general societal objectives. The growing interest and importance of multiple-hazard engineering has been recognized recently. This has spurred the evolution of multiple-hazard risk-assessment frameworks and development of design approaches which have paved way for future research towards sustainable construction of new and improved structures and retrofitting of the existing structures. This report provides a review of literature and the current state of practice for assessment, design and mitigation of the impact of multiple hazards on structural infrastructure. It also presents an overview of future research needs related to multiple-hazard performance of constructed facilities.