979 resultados para Design Platform
Resumo:
Flexible forms of work like project work are gaining importance in industry and services. Looking at the research on project work, the vast majority of present literature is on project management, but increasingly, problems concerning the quality of work and the efficiency of project teams become visible. The question now is how project work can be structured in order to simultaneously provide efficient and flexible work and healthy working conditions ensuring the development of human resources for a long time. Selected results of publicly funded research into project work will be presented based on case studies in 7 software development /IT consulting project teams (N=34). A set of different methods was applied: interviews with management/project managers, group interviews on work constraints, a monthly diary about well-being and critical incidences in the course of the project, and a final evaluation questionnaire on project outcomes focusing on economic and health aspects. Findings reveal that different types of projects exist with varying degree of team members’ autonomy and influence on work structuring. An effect of self-regulation on mental strain could not be found. The results emphasize, that contradicting requirements and insufficient organizational resources with respect to the work requirements lead to an increased work intensity or work obstruction. These contradicting requirements are identified as main drivers for generating stress. Finally, employees with high values on stress for more than 2 months have significantly higher exhaustion rates than those with only one month peaks. Structuring project work and taking into account the dynamics of project work, there is a need for an active role of the project team in contract negotiation or the detailed definition of work – this is not only a question of individual autonomy but of negotiation the range of option for work structuring. Therefore, along with the sequential definition of the (software) product, the working conditions need to be re-defined.
Resumo:
This thesis aims at addressing the development of autonomous behaviors, for search and exploration with a mini-UAV (Unmanned Aerial Vehicle), or also called MAV (Mini Aerial Vehicle) prototype, in order to gather information in rescue scenarios. The platform used in this work is a four rotor helicopter, known as quad-rotor from the German company Ascending Technologies GmbH, which is later assembled with a on-board processing unit (i.e. a tiny light weight computer) and a on-board sensor suite (i.e. 2D-LIDAR and Ultrasonic Sonar). This work can be divided into two phases. In the first phase an Indoor Position Tracking system was settled in order to obtain the Cartesian coordinates (i.e. X, Y, Z) and orientation (i.e.heading) which provides the relative position and orientation of the platform. The second phase was the design and implementation of medium/high level controllers on each command input in order to autonomously control the aircraft position, which is the first step towards an autonomous hovering flight, and any autonomous behavior (e.g. Landing, Object avoidance, Follow the wall). The main work is carried out in the Laboratory ”Intelligent Systems for Emergencies and Civil Defense”, in collaboration with ”Dipartimento di Informatica e Sistemistica” of Sapienza Univ. of Rome and ”Istituto Superiore Antincendi” of the Italian Firemen Department.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do Grau de Mestre em Engenharia Informática.
Resumo:
With the advent of wearable sensing and mobile technologies, biosignals have seen an increasingly growing number of application areas, leading to the collection of large volumes of data. One of the difficulties in dealing with these data sets, and in the development of automated machine learning systems which use them as input, is the lack of reliable ground truth information. In this paper we present a new web-based platform for visualization, retrieval and annotation of biosignals by non-technical users, aimed at improving the process of ground truth collection for biomedical applications. Moreover, a novel extendable and scalable data representation model and persistency framework is presented. The results of the experimental evaluation with possible users has further confirmed the potential of the presented framework.
Resumo:
Este guião de apoio à formação tem como objectivo apoiar docentes em (1) aprender boas práticas no design de páginas web, (2) conhecer aspectos de versatilidade do moodle e (3) configurar o bloco "course menu".
Resumo:
Radio frequency (RF) energy harvesting is an emerging technology that will enable to drive the next generation of wireless sensor networks (WSNs) without the need of using batteries. In this paper, we present RF energy harvesting circuits specifically developed for GSM bands (900/1800) and a wearable dual-band antenna suitable for possible implementation within clothes for body worn applications. Besides, we address the development and experimental characterization of three different prototypes of a five-stage Dickson voltage multiplier (with match impedance circuit) responsible for harvesting the RF energy. Different printed circuit board (PCB) fabrication techniques to produce the prototypes result in different values of conversion efficiency. Therefore, we conclude that if the PCB fabrication is achieved by means of a rigorous control in the photo-positive method and chemical bath procedure applied to the PCB it allows for attaining better values for the conversion efficiency. All three prototypes (1, 2 and 3) can power supply the IRIS sensor node for RF received powers of -4 dBm, -6 dBm and -5 dBm, and conversion efficiencies of 20, 32 and 26%, respectively. © 2014 IEEE.
Resumo:
Traditional Real-Time Operating Systems (RTOS) are not designed to accommodate application specific requirements. They address a general case and the application must co-exist with any limitations imposed by such design. For modern real-time applications this limits the quality of services offered to the end-user. Research in this field has shown that it is possible to develop dynamic systems where adaptation is the key for success. However, adaptation requires full knowledge of the system state. To overcome this we propose a framework to gather data, and interact with the operating system, extending the traditional POSIX trace model with a partial reflective model. Such combination still preserves the trace mechanism semantics while creating a powerful platform to develop new dynamic systems, with little impact in the system and avoiding complex changes in the kernel source code.
Resumo:
The work agenda includes the production of a report on different doctoral programmes on “Technology Assessment” in Europe, the US and Japan, in order to analyse collaborative post-graduation activities. Finally, the proposals on collaborative post-graduation programme between FCTUNL and ITAS-FZK will be organised by an ongoing discussion process with colleagues from ITAS.
Resumo:
Physical computing has spun a true global revolution in the way in which the digital interfaces with the real world. From bicycle jackets with turn signal lights to twitter-controlled christmas trees, the Do-it-Yourself (DiY) hardware movement has been driving endless innovations and stimulating an age of creative engineering. This ongoing (r)evolution has been led by popular electronics platforms such as the Arduino, the Lilypad, or the Raspberry Pi, however, these are not designed taking into account the specific requirements of biosignal acquisition. To date, the physiological computing community has been severely lacking a parallel to that found in the DiY electronics realm, especially in what concerns suitable hardware frameworks. In this paper, we build on previous work developed within our group, focusing on an all-in-one, low-cost, and modular biosignal acquisition hardware platform, that makes it quicker and easier to build biomedical devices. We describe the main design considerations, experimental evaluation and circuit characterization results, together with the results from a usability study performed with volunteers from multiple target user groups, namely health sciences and electrical, biomedical, and computer engineering. Copyright © 2014 SCITEPRESS - Science and Technology Publications. All rights reserved.
Resumo:
In this paper a new simulation environment for a virtual laboratory to educational proposes is presented. The Logisim platform was adopted as the base digital simulation tool, since it has a modular implementation in Java. All the hardware devices used in the laboratory course was designed as components accessible by the simulation tool, and integrated as a library. Moreover, this new library allows the user to access an external interface. This work was motivated by the needed to achieve better learning times on co-design projects, based on hardware and software implementations, and to reduce the laboratory time, decreasing the operational costs of engineer teaching. Furthermore, the use of virtual laboratories in educational environments allows the students to perform functional tests, before they went to a real laboratory. Moreover, these functional tests allow to speed-up the learning when a problem based approach methodology is considered. © 2014 IEEE.
Resumo:
More than ever, the economic globalization is creating the need to increase business competitiveness. Lean manufacturing is a management philosophy oriented to the elimination of activities that do not create any type of value and are thus considered a waste. One of the main differences from other management philosophies is the shop-floor focus and the operators' involvement. Therefore, the training of all organization levels is crucial for the success of lean manufacturing. Universities should also participate actively in this process by developing students' lean management skills and promoting a better and faster integration of students into their future organizations. This paper proposes a single realistic manufacturing platform, involving production and assembly operations, to learn by playing many of the lean tools such as VSM, 5S, SMED, poke-yoke, line balance, TPM, Mizusumashi, plant layout, and JIT/kanban. This simulation game was built in tight cooperation with experienced lean companies under the international program “Lean Learning Academy,”http://www.leanlearningacademy.eu/ and its main aim is to make bachelor and master courses in applied sciences more attractive by integrating classic lectures with a simulated production environment that could result in more motivated students and higher study yields. The simulation game results show that our approach is efficient in providing a realistic platform for the effective learning of lean principles, tools, and mindset, which can be easily included in course classes of less than two hours.
Resumo:
This paper presents the design and compares the performance of linear, decoupled and direct power controllers (DPC) for three-phase matrix converters operating as unified power flow controllers (UPFC). A simplified steady-state model of the matrix converter-based UPFC fitted with a modified Venturini high-frequency pulse width modulator is first used to design the linear controllers for the transmission line active (P) and reactive (Q) powers. In order to minimize the resulting cross coupling between P and Q power controllers, decoupled linear controllers (DLC) are synthesized using inverse dynamics linearization. DPC are then developed using sliding-mode control techniques, in order to guarantee both robustness and decoupled control. The designed P and Q power controllers are compared using simulations and experimental results. Linear controllers show acceptable steady-state behaviour but still exhibit coupling between P and Q powers in transient operation. DLC are free from cross coupling but are parameter sensitive. Results obtained by DPC show decoupled power control with zero error tracking and faster responses with no overshoot and no steady-state error. All the designed controllers were implemented using the same digital signal processing hardware.
Resumo:
This article addresses the problem of obtaining reduced complexity models of multi-reach water delivery canals that are suitable for robust and linear parameter varying (LPV) control design. In the first stage, by applying a method known from the literature, a finite dimensional rational transfer function of a priori defined order is obtained for each canal reach by linearizing the Saint-Venant equations. Then, by using block diagrams algebra, these different models are combined with linearized gate models in order to obtain the overall canal model. In what concerns the control design objectives, this approach has the advantages of providing a model with prescribed order and to quantify the high frequency uncertainty due to model approximation. A case study with a 3-reach canal is presented, and the resulting model is compared with experimental data. © 2014 IEEE.
Resumo:
Laminate composite multi-cell structures have to support both axial and shear stresses when sustaining variable twist. Thus the properties and design of the laminate may not be the most adequate at all cross-sections to support the torsion imposed on the cells. In this work, the effect of some material and geometric parameters on the optimal mechanical behaviour of a multi-cell composite laminate structure is studied when torsion is present. A particle swarm optimization technique is used to maximize the multi-cell structure torsion constant that can be used to obtain the angle of twist of the composite laminate profile.
Resumo:
The disturbing emergence of multidrug-resistant strains of Mycobacterium tuberculosis (Mtb) has been driving the scientific community to urgently search for new and efficient antitubercular drugs. Despite the various drugs currently under evaluation, isoniazid is still the key and most effective component in all multi-therapeutic regimens recommended by the WHO. This paper describes the QSAR-oriented design, synthesis and in vitro antitubercular activity of several potent isoniazid derivatives (isonicotinoyl hydrazones and isonicotinoyl hydrazides) against H37Rv and two resistant Mtb strains. QSAR studies entailed RFs and ASNNs classification models, as well as MLR models. Strict validation procedures were used to guarantee the models' robustness and predictive ability. Lipophilicity was shown not to be relevant to explain the activity of these derivatives, whereas shorter N-N distances and lengthy substituents lead to more active compounds. Compounds I, 2, 4, 5 and 6, showed measured activities against H37Rv higher than INH (i.e., MIC <= 0.28 mu M), while compound 9 exhibited a six fold decrease in MIC against the katG (S315T) mutated strain, by comparison with INH (Le., 6.9 vs. 43.8 mu M). All compounds were ineffective against H37Rv(INH) (Delta katG), a strain with a full deletion of the katG gene, thus corroborating the importance of KatG in the activation of INH-based compounds. The most potent compounds were also shown not to be cytotoxic up to a concentration 500 times higher than MIC. (C) 2014 Elsevier Masson SAS. All rights reserved.