929 resultados para Derugin Basin barite mountains
Resumo:
The recent years research indicated that middle-south section of Da Hinggan Mountains metallogenic belt has two periods(Hercynian and Yanshanian) characteristics of metallogenesis, as well as the most of ore deposits in the area closely relate to Permian strata. Longtoushan ore deposit discovered in 2004 is an Ag-Pb-Zn polymetallic ore deposit born in Permian and located in the east hillside of the metallogenic belt, which has considerable resources potentials. It has important research value for its good metallogenic location and blank research history. Base on the detail field geology studies, the geology characteristics of "two stages and three kinds of metallogensis" has established. According to further work through geochemistry research including trace element, REE, S, Pb and Sr isotope, as well as petrography, microtemperature measurement, Laser Raman analysis and thermodynamics calculation of fluid inclusion, origin and characteristic of the ore-forming material and fluid has been discussed. And a new technology of single pellet Rb-Sr isochrones has been tried for dating its born time. Bae on above work, study of ore deposit comparison has been carried out, and metallogesis controlling factor and geological prospecting symbol have been summarized. Finally, metallogenic model and prospecting model have been established. According to above, the next step work direction has been proposed. Main achievement of the paper are listed as follow: 1.Longtoushan ore deposit has experienced two metallogenic periods including hot-water sedimentation period and hydrothermal reformation period. There are three kinds of metallizing phase: bedded(or near-bedded) phase, vein-shaped phase and pipe-shaped phase. The mian metallogenic period is hot-water sedimentation period. 2.Ore deposit geochemistry research indicated that the metal sulfides have charcateristic of hot-water sedimentation metallogensis, but generally suffered later hydrothermal transformation. The barite mineral isotope content is homogenous, showing the seabed hot-water sedimentation origin characteristic. Wall rock, such as tuff is one of metallogenic material origins. Both of Pb model age and Rb-Sr isochrone research older age value than that of strata, possibly for been influenced by hydrothermal transformation, and interfusion of ancient basis material. 3.There are two kinds of main metallogenic fluid inclusion in barite of the Longtoushan ore deposit, which are rich gas phase( C type) and liquid phase (D type). Their size is 2~7um, and principal components is H2O. Both kinds of fluid inclusion have freezing point temperature -7.1~-2.4℃ and -5.5~-0.3℃, salinity 4.0~10.6wt% and 0.5~8.5wt%, homogeneous temperature 176.8~361.6℃ and 101.4~279.9℃, which peak value around 270℃ and 170℃, respectively. Density of the ore-forming fluid is 0.73~0.97g/cm3, and metallogenic pressure is 62.3×105~377.9×105Pa. Above characteristic of the fluid inclusion are well geared to that of ore deposit originated in seabed hot-water sedimentation. 4.Through the comparison research, that Longtoushan ore deposit has main characteristic of hot-water sedimentation ore deposit has been indicated. Ore-forming control factor and prospecting symbol of it has been summarized, as well as metallogenic model and prospecting model. Next step work direction about prospecting has also been proposed finally.
Resumo:
The Tarim Block is located between the Tianshan Mountains in the north and the Qinghai-Tibet Plateau in the south and is one of three major Precambrian cratonic blocks of China. Obviously, the Paleozoic paleogeographic position and tectonic evolution for the Tarim Block are very important not only for the study of the formation and evolution of the Altaids, but also for the investigation of the distributions of Paleozoic marine oil and gas in the Tarim Basin. According to the distributions of Paleozoic strata and suface outcrops in the Tarim Block, the Aksu-Keping-Bachu area in the northwestern part of the Tarim Block were selected for Ordovician paleomagnetic studies. A total of 432 drill-core samples form 44 sampling sites were collected and the samples comprise mainly limestones, argillaceous limestones and argillaceous sandstones Based on systematic study of rock magnetism and paleomagnetism, all the samples could be divided into two types: the predominant magnetic minerals of the first type are hematite and subordinate magnetite. For the specimens from this type, characteristic remanent magnetization (ChRM) could generally be isolated by demagnetization temperatures larger than 600℃; we assigned this ChRM as component A; whilst magnetite is the predominant magnetic mineral of the second type; progressive demagnetization yielded another ChRM (component B) with unblocking temperatures of 550-570℃. The component A obtained from the majority of Ordovician specimens has dual polarity and a negative fold test result; we interpreted it as a remagnetization component acquired during the Cenozoic period. The component B can only be isolated from some Middle-Late Ordovician specimens with unique normal polarity, and has a positive fold test result at 95% confidence. The corresponding paleomagnetic pole of this characteristic component is at 40.7°S, 183.3°E with dp/dm = 4.8°/6.9° and is in great difference with the available post-Late Paleozoic paleopoles for the Tarim Block, indicating that the characteristic component B could be primary magnetization acquired in the formation of the rocks. The new Ordovician paleomagnetic result shows that the Tarim Block was located in the low- to intermediate- latitude regions of the Southern Hemisphere during the Middle-Late Ordovician period, and is very likely to situate, together with the South China Block, in the western margin of the Australian-Antarctic continents of East Gondwana. However, it may have experienced a large northward drift and clockwise rotation after the Middle-Late Ordovician period, which resulted in the separation of the Tarim Block from the East Gondwanaland and subsequent crossing of the paleo-equator; by the Late Carboniferous period the Tarim Block may have accreted to the southern margin of the Altaids.
Resumo:
These are two parts included in this report. In the first part, the zonation of the complexes in its series, lithofacies, the depth of magma source and chambers is discussed in detailed for the first time based on the new data of petrol-chemistry, isotopes, tectono-magma activity of Mesozoic volcano-plutonic complexes in the southern Great Hinggan Mts. Then, the genetic model of the zonality, double overlapped layer system, is proposed. The main conclusions are presented as follows: The Mesozoic volcanic-plutonic complexes in the southern Great Hinggan were formed by four stages of magma activity on the base of the subduction system formed in late Paleozoic. The Mesozoic magmatic activity began in Meso-Jurassic Epoch, flourished in late Jurassic Epoch, and declined in early Cretaceous Epoch. The complexes consist dominantly of acidic rocks with substantial intermediate rocks and a few mefic ones include the series of calc alkaline, high potassium calc alkaline, shoshonite, and a few alkaline. Most of those rocks are characterized by high potassium. The volcano-plutonic complexes is characterized by zonality, and can be divided mainly into there zones. The west zone, located in northwestern side of gneiss zone in Great Xinggan mountains, are dominated of high potassium basalts and basaltic andesite. The middle zone lies on the southeast side of the Proterozoic gneiss zone, and its southeast margin is along Huangganliang, Wushijiazi, and Baitazi. It composed of dominatly calc-alkaline, high potassium calc-alkaline rocks, deep granite and extrusive rhyolite. The east zone, occurring along Kesheketong Qi-Balinyou Qi-Balinzuo Qi, is dominated of shoshonite. In generally, southeastward from the Proterozoic gneiss zone, the Mesozoic plutons show the zones-mica granitites zone, hornblende-mica granitite zone, mica-hornblende granitite zone; the volcanic rocks also display the zones of calc alkaline-high potassium calc alkaline and shoshonites. In the same space, the late Paleozoic plutons also display the same zonality, which zones are combined of binary granite, granodiorite, quartz diorite and diorite southeast wards from the gneiss. Meso-Jurassic Epoch granite plutons almost distribute in the middle zone on the whole. Whereas late Jurassic Epoch volcanic rocks distribute in the west and east zone. This distribution of the volcano-plutonic complexes reveals that the middle zone was uplifted more intensively then the other zones in Meso-Jurassic and late Jurassic Epoches. Whole rock Rb-Sr isochron ages of the high potassium calc-alkaline volcanic rocks in the west zone, the calc-alkaline and high potassium calc-alkaline granite the middle zone, shoshonite in the east zone are 136Ma, 175Ma and 154Ma, respectively. The alkaline rocks close to the shoshonite zone is 143Ma and 126Ma. The isochron ages are comparable well with the K-Ar ages of the rocks obtained previously by other researchers. The compositions of Sr ans Nd isotopes suggest that the source of Mesozoic volcanic-plutonic complexes in Great Hinggan Mts. is mostly Paleo-Asia oceanic volcanic-sedimentary rocks, which probably was mixed by antiquated gneiss. The tectonic setting for Mesozoic magmatism was subductive continental margin. But this it was not directly formed by present west Pacific subduction. It actully was the re-working of the Paleozoic subduction system( which was formed during the Paleo-Asia ocean shortening) controlled by west Pacific subduction. For this reason, Although Great Hinggan Mts. is far away from west Pacific subduction zone, its volcanic arc still occurred echoing to the volcanic activities of east China, it, but the variation trend of potassium content in volcano-plutonic complexes of Great Hinggan is just reverse to ones of west Pacific. The primitive magmas occurred in the southern Great Hinggan Mts. Include high-potassium calc-alkaline basalt, high potassium calc-alkaline rhyolite, high potassium rhyolite, non-Eu negative anomaly trachy-rhyolite et al. Therefore, all of primitive magmas are either mafic or acid, and most of intermediate rocks occurring in the area are the products of Mesozoic acid magma contaminated by the Paleozoic volcanic- sedimentary rocks. The depth of those primitive magma sources and chambers gradually increase from northwest to southeast. This suggests that Paleozoic subduction still controlled the Mesozoic magmatism. In summary, the lithosphere tectonic system of the southern Great Hinggan Mts. controlling Mesozoic magmatism is a double overlapped layer system developing from Paleozoic subduction system. For this reason, the depth of crust of the southern Great Hinggan Mts. is thicker than that of its two sides, and consequently it causes regional negative gravity abnormity. The second part of this report shows the prolongation of the research work carried on in my doctor's period. Author presents new data about Rb-Sr and Sm-Nd isotopic compositions and ages, geochamical features, genesis mineralogy and ore deposit geology of the volcanic rocks in Kunyang rift. On the base of the substantial work, author presents a prospect of copper bearing magnetite ore deposit. The most important conclusions are as follows: 1. It is proved that all of these carbonatites controlled by a ringing structure system in Wuding-Lufeng basin in the central Yunnan were formed in the Mesoproterozoic period. Two stages could be identified as follows: in the first stage, carbonatitic volcanic rocks, such as lavas(Sm-Nd, 1685Ma), basaltic porphyrite dykes(Sm-Nd, 1645Ma), pyroclastic rocks and volcaniclastic sedimentary rocks, formed in the outer ring; in the second stage, carbonatitic breccias and dykes(Rb-Sr, 1048 Ma) did in the middle ring. The metamorphic age of the carbonatitic lavas (Rb-Sr, 893 Ma) in the outer ring was determined. The magma of carbonatitic volcanic rocks derived mainly form enriched mantle whose basement is depleted mantle that had been metasomated by mantle fluid and contaminated by Archaean lower crust. Carbonatitic spheres were discovered in ore bearing layers in Lishi copper mining in Yimen recently, which formed in calcite carbonatitic magma extrusion. This discovery indicates that the formation of copper ore deposit genesis relates to carbonatitic volcanic activity. The iron and copper ore deposits occurring in carbonatitic volcanic- sedimentary rocks in Kunyang rift results from carbonatitic magmatism. Author calls this kind of ore deposits as subaqueous carbonatitic iron-copper deposit. The magnetic anomaly area in the north of Lishi copper mining in Yimen was a depression more lower than its circumference. Iron and copper ores occurrig on the margin of the magnetic anomaly are volcanic hydrothermal deposit. The magnetic body causing the magnetic anomaly must be magnetite ore. Because the anomaly area is wide, it can be sure that there is a large insidious ore deposit embedding there.
Resumo:
Study on the structural coupling relationship between basin and range is not only helpful to recognize the basin formation and evolution systematically, but also to guide petroleum exploration in the basin. As a late Paleozoic Orogen, the South Tianshan Mountains reactivated and uplifted rapidly during the Cenozoic, and led to the Mesozoic-Cenozoic considerable thick deposits in the Kuqa Depression. The researches of the dissertation were carried out in the Kuqa depression-South Tianshan M ountain s ystem, a nd t he b rittle m icrotectonics w. ere c hosen as t he m ost important object. Based on observations and measurements of the field, we made detailed investigations on the geometry and kinematics of this area, and analyzed the abutting and cutting relationships and relative sequence of many brittle structures, such as joint, shear fractures, faults and some small-scale structures related to them closely. According to those brittle fractures' relationships with stress, the nature and variation of regional palaeostress field during the Cenozoic were studied through inversion of fault slip data and inferring stress state from joint sequences. And the deformation time was estimated primarily via ESR dating of faulting. Results show that the stress field varies as well in times as in space. The maximal principal stress direction shifted from the vertical to the horizontal, and stress regime from weak extension to strong compression from the Paleogene to the Neogene regionally. During the late Neogene, the structural deformation of the South Tianshan and the basin-range boundary was dominated by near N-S extension, while near N-S compressive deformation in the interior of the Kuqa Depression. There exits obvious differential stress state from the north to the south. ESR dating of the faulting during the Cenozoic indicates that, the normal faulting in the north edge of the Kuqa Depression have been active all along from the Miocene to the early Pleistocene, but the thrusting and reverse faulting in the interior only been active from the Pliocene to the early Pleistocene. On the base of those geological data and some geophysical information and theoretical calculation results, we infer that, the different stress regime the basin-range system is ascribed to the vertical uplift of the Tianshan Mountain. It was the vertical uplift that lead to the gravity-driven gliding of thick layers lying on the faulted basement from the South Tianshan Mountain to the Kuqa depression, and to folding and thrusting in the interior and frontal of the Kuqa depression. Combining the structural evolution with petroleum geological conditions of the Kuqa Depression, we think that the strong compressive deformation of the Kuqa Depression during rapid uplifting of the Tianshan Mountains from the Pliocene to the early Pleistocene play crucial role in the structural trap formation and proliferous gas accumulation.
Resumo:
The foreland basin on the northern margin of the lower reach of the Yangtze river (the lower Yangtze foreland basin) is tectonically situated in the basin-mountain transitional area along the southeastern flank of the Dabie mountains. The early formation and development of the basin is closely related to the open-up of the Mian-Lue paleo-oceanic basin on the southern margin of the Central Orogenic System represented by Qinling-Dabei orogenic belt, while the tectonic evolution of the middle-late stage of the basin is mainly related to development of the Mian-Lue tectonic zone that occurred on the basis of the previous Mian-Lue paleo-suture. The foreland basin of the northern rim of the lower reach of the Yangtze river was formed during the middle-Triassic collision between the Yangtze and North China plates and experienced an evolution of occuirence-development-extinction characterized by marine facies to continental facies and continental margin to intracontinent in terms of tectonic setting.The foreland basin (T2-J2) was developed on the basis of the passive continental marginal basin on the south side of the Mian-Lue paleo-ocean and superimposed by late Jurassic-Tertiary fault basin. The tectonic setting underwent a multiple transformation of rifting-collisional clososing-tensional faulting and depression, which resulted in changes of the property for the basin and the final formation of the superposed compose basin in a fashion of 3-story-building. According to the tectonic position and evolution stages of plate collision happening on the southeastern margin of the Dabie mountains, and tectono-tratigraphic features shown by the foreland basin in its main formational period, the evolution of the foreland basin can be divided into four stages: 1) pre-orogenic passive margin (P2-Ti). As the Mian-Lue ocean commenced subduction in the late-Permian, the approaching of the Yangtze and North China plates to each other led to long-periodical and large-scale marine regression in early Triassic which was 22 Ma earlier than the global one and generated I-type mixed strata of the clastic rocks and carbonate, and I-type carbonate platform. These represent the passive stratigraphy formed before formation of the foreland basin. 2) Foreland basin on continental margin during main orogenic episode (T2.3). The stage includes the sub-stage of marine foreland basin (T2X remain basin), which formed I-type stratigrphy of carbonate tidal flat-lagoon, the sub-stage of marine-continental transition-molasse showing II-type stratigraphy of marine-continental facies lake - continental facies lake. 3) Intracontinental foreland basin during intracontinental orogeny (Ji-2)- It is characterized by continental facies coal-bearing molasses. 4) Tensional fault and depression during post-orogeny (J3-E). It formed tectono-stratigraphy post formation of the foreland basin, marking the end of the foreland evolution. Fold-thrust deformation of the lower Yangtze foreland basin mainly happened in late middle-Jurassic, forming ramp structures along the Yangtze river that display thrusting, with deformation strength weakening toward the river from both the Dabie mountains and the Jiangnan rise. This exhibits as three zones in a pattern of thick-skinned structure involved the basement of the orogenic belt to decollement thin-skinned structure of fold-thrust from north to south: thrust zone of foreland basin on northern rim of the lower reach of the Yangtze river, foreland basin zone and Jiannan compose uplift zone. Due to the superposed tensional deformation on the earlier compressional deformation, the structural geometric stratification has occurred vertically: the upper part exhibits late tensional deformation, the middle portion is characterized by ramp fault -fold deformation on the base of the Silurian decollement and weak deformation in the lower portion consisting of Silurian and Neo-Proterozoic separated by the two decollements. These portions constitutes a three-layered structural assemblage in a 3-D geometric model.From the succession of the lower reach of the Yangtze river and combined with characteristics of hydrocarbon-bearing rocks and oil-gas system, it can be seen that the succession of the continental facies foreland basin overlies the marine facies stratigraphy on the passive continental margin, which formed upper continental facies and lower marine facies hydrocarbon-bearing rock system and oil-gas forming system possessing the basic conditions for oil-gas occurrence. Among the conditions, the key for oil-gas accumulation is development and preservation of the marine hydrocarbon-bearing rocks underlying the foreland basin. The synthetic study that in the lower Yangtze foreland basin (including the Wangjiang-Qianshan basin), the generation-reservoir-cover association with the Permian marine facies hydrocarbon-bearing rocks as the critical portion can be a prospective oil-gas accumulation.Therefore, it should aim at the upper Paleozoic marine hydrocarbon-bearing rock system and oil-gas forming system in oil-gas evaluation and exploration. Also, fining excellent reservoir phase and well-preserved oil-gas accumulation units is extremely important for a breakthrough in oil-gas exploration.
Resumo:
Kela-2 gas field in Tarim Basin is the main supply source for West-to-East Pipeline project, also the largest abnormally-pressured gas field discovered in China currently. The geological characterization, fine geological modeling and field development plan are all the world-class difficult problems. This work includes an integrated geological and gas reservoir engineering study using advanced technology and approaches, the scientific development plan of Kela-2 gas field as well as the optimizations of the drilling, production and surface schemes. Then, it's expected that the Kela-2 gas field can be developed high-efficiently.Kuche depression is one part of the thrust belt of the South Tianshan Mountains, Kela-2 field is located at the Kelasu structural zone in the north of Kuche depression. The field territory is heavily rugged with deeply cut gullies, complex geological underground structure, variable rock types, thrust structure development. Therefore, considerable efforts have been made to develop an integrated technique to acquire, process and interpret the seismic data in complicated mountain region. Consequently a set of seismic-related techniques in the complicated mountain region has been developed and successfully utilized to interpret the structure of Kela-2 gas field.The main reservoir depositional system of Kela 2 gas field is a platform - fan delta - braided river system. The reservoir rocks are medium-fine and extremely fine grained sandstones with high structure maturity and low composition maturity. The pore system structure is featured by medium-small pore, medium-fine throat and medium-low assortment. The reservoir of Kela-2 gas field is characteristic of medium porosity and medium permeability. The pay zone is very thick and its lateral distribution is stable with a good connection of sand body. The overpressure is caused mainly by the strongly tectonic squash activities, and other factors including the later rapid raise and compartment of the high-pressure fluid, the injection of high-pressure fluid into the reservoir.Based on the deliverability tests available, the average binomial deliverability equation is provided applicable for the overall field. The experimental results of rock stress-sensitive tests are employed to analyze the change trend of petrophysical properties against net confining stress, and establish the stress-based average deliverability equation. The results demonstrate the effect of rock deformation on the deliverability is limited to less than 5% in the early period of Kela-2 gas field, indicating the insignificant effect on deliverability of rock deformation.In terms of the well pattern comparisons and development planning optimizations, it is recommended that the producers should be located almost linearly along the structural axis. A total of 9 producers have a stable gas supply volume of 10.76 BCMPY for 17 years. For Kela-2 gas field the total construction investment is estimated at ¥7,697,690,000 RMB with the internal earning rate of 25.02% after taxation, the net present value of ¥7,420,160,000 RMB and the payback period of 5.66 years. The high profits of this field development project are much satisfactory.
Resumo:
Fluvial Sedimentation of alluvial facies prevailed during the Late Jrassic in the Minhe Basin.On the basis of the study of sedimentary facies of the Upper Jurassic series.this paper focuses on the river types suing the "Architecture Element" analysis method proposed by Miall,and calculated all the quantitative parameters to reflect the characteristics of the stream channel geometry and hydrodynamic conditions of paleo-rivers with the equations of ethrideg,schumm et al.Finally,we discussed the characteristics of environmental evolution of palsorivers on the quantitative basis.Our conclusion indicates that the evolution of paleo-rivers during the Late Jurassic,from early to late,shows such a tendency as alluvial fan river→ braid river→alluvial fan river→mid-sinuoisty river→ high-sinuosity river.