868 resultados para Dependência energética
Resumo:
This paper analyzed the energy flow of a route currently designed to transport ethanol from the Midwest region of Brazil for exportation, more precisely from the city of Aparecida do Taboado (MS) to the port of São Sebastiao (SP). The route studied a single modal combined into two pieces, duct - duct. The direct and indirect energy, involved in the operations were used to account for the inputs and outputs of energy from and into the system. The energy input and output were the variables, diesel fuel, lubricants, greases, indirect energy consumption of machinery and equipment, power consumption of labor, the energy consumption and energy consumption in depreciation and maintenance of roads. We found that this route has specific energy consumption of 0,14 MJ km-1 m-3 . The Net Energy Gain (GEl), the Energy Efficiency global (EEg) and Renewable Energy Balance (BEr), which were the energy indicators adopted in this study were obtained respectively: 1.585.958.977,00 MJ; 200,72 and 1.593.900.000,00MJ.
Resumo:
The aim of this paper was to perform an energy assessment of firewood and woodshaving use for energy generation in sericulture agroindustry boilers. In this research, we used a boiler from a silk spinning factory located in the city of Duartina, São Paulo, Brazil, that currently uses eucalyptus firewood as fuel to generate water vapour used in silk fiber production. In the studied fuels utilization system energy consumption structure development, we considered energy input in Megajoule (MJ) by type, source and form involved in several firewood use technical itinerary operations, as well as in woodshaving use technical itinerary operations. From these fuels utilization built structure, we performed a firewood- and woodshaving-generated energy input comparative analysis, in Megajoule/hour (MJ.h-1), to produce 2.968,80 kg.h-1 of vapour, which is the boiler average production, during the following years: 2004, 2005, and 2006. The energy analysis results revealed that to replace eucalyptus firewood with woodshaving is something possible in the boiler, reducing total energy consumption approximately by 21%.
Resumo:
Forage sorghum can be grown in areas and environmental conditions dry and warm, where the productivity of other forage plants can often be uneconomical. The soil disturbance can be made only on the lines of planting (direct seeding) or entirely from the area for seeding (conventional tillage), as plowing, harrowing, subsoiling and chiseling (minimum tillage). The displacement speed ideal for planting is one in which the groove is opened and closed without removing the over-ground, allowing the distribution of seed spacing and depth constant. The experiment was conducted in a soil classified as Typic Oxisol at Lageado Experimental Farm, Faculty of Agronomic Sciences, UNESP, Botucatu campus. This study aimed to evaluate the response of sorghum in four forward speeds (3, 5, 6 and 9 km h-1) and four systems of soil management: SD (direct seeding), GP (harrow + sowing), LPG (disc harrow and two light disking + sowing) and CR (scarification and seeding). Data was subjected to analysis of variance in a factorial 4 x 4 and a randomized block design with split plots. The following parameters were determined: average speed, average strength of the drawbar, the average power drawbar, theoretical field capacity of the tractor-equipment, fuel consumption per hour. For the conditions under which the experiment was conducted, it was concluded that the hourly fuel consumption was not influenced by tillage systems and was inversely proportional to the increase of speed work, and that the change of speed in the sowing operation did not provide additional the values of average traction force on the bar of the tractor-planter.
Resumo:
The aim of this study was to evaluate the influence of preparation: intermediate grade, minimum tillage and no-till on the agronomic characteristics and energy demand of transgenic soybean cultivars and non-GMO soybeans. Soil preparation aims at improving physical, chemical and biological conditions, aiming at good emergence and plant development. The different types of tillage may interfere with the agronomic characteristics and productivity of plants, and in energy use which can cause variation in production costs. Genetically modified plants can be one of the alternatives for reduction of production costs in crops by reducing pesticide applications, enabling higher productivity with less environmental impact. The test was conducted in 2010/2011 at the agricultural Experimental Farm Lageado, belonging to the Faculty of Agronomic Sciences – UNESP, located in the city of Botucatu, SP in an area using no-till systems for the past 12 years. The experiment was carried out in a 3 x 2 factorial, randomized treatments were comprised of three soil preparation systems, minimum cultivation, intermediate grade preparation and no-till, with two cultivars of soybeans: MGBR-46 Conquest (conventional), Valuable RR (Transgenic). The data obtained was submitted to variance analysis using Tukey test at a 5% probability. With the results analyzed it might be observed that there was no significant difference between treatments, in the variables, the percentage of soil cover, final soybean plant population, grain yield and plant height. The results obtained show that the no-till system resulted in higher productivity than conventional tillage and minimum cultivation. The higher specific energy use per area was observed in minimum cultivation with a chisel plough, when compared to the preparation across the grid. The greatest fuel consumption was to treat minimum cultivation with chisel plough. The highest values were found in the skating system of minimum cultivation, being greater in conventional tillage system. It is more satisfactory for the producer to sow transgenic soy using a no-till system, because productivity retrieved from that system compensates for fuel expenditure.
Resumo:
This study aimed to account the energy balance of six different farming systems: CMT (minimum tillage with transgenic corn); CMNT (minimum tillage with non-transgenic corn); PCT (conventional tillage with transgenic corn); PCNT (conventional tillage with non-transgenic corn); PDT (no-tillage system with transgenic corn) and PDNT (no-tillage system with non-transgenic corn). The study was carried out at the Experimental Farm Lageado FCA/Unesp, Botucatu - SP. The energy balance was performed by subtracting the total energy inputs by the total energy output. Energy efficiency was calculated by dividing the total energy output by the total energy inputs. The total values of energy inputs and outputs were expressed in MJ.ha-1 (mega joules per hectare). To calculate the energy inputs were accounted the fuel consumption and lubricants, depreciation energy of machinery and implements, manpower and agricultural inputs. The energy outputs were calculated according to the maize yield. The result shows that the system PDT was the system that had better energy efficiency and the system that had the lowest efficiency was the PCT system. The system with lower energy demand was the PDT and the greatest demand was PCNT.
Resumo:
The objective of this study was to characterize energetically beersmade withhoney. The tests of beer production weremade withninetreatments,threecombination of the originalextract concentrations (11, 13and 15 °Brix) and threepercentagesof honeyin the wort formulation(0, 20 and 40%).The experimentwas completely randomizedwith two replications, totaling eighteenplots.Themashingprocesswas performed byinfusion, with honey added in the boiling step. After clarified, the wort had its extract contents corrected with the addition of filtered water and was inoculated withlowfermentation yeast .The fermentation occurred at 10 ° C. The beer was manually bottled and stored in a freezer at 0 °C for 15 days, formaturation. The beers were chemically analyzed on proximate composition (moisture, protein, lipid, ash, and carbohydrate), alcohol content (% m / m) and then calculated the energy value. The results ofchemical analysis andenergetic valuesof the beerswere subjected to analysisof variance (F test) and the means werecompared byTukey testat 5% probability. The commonbeershad the lowestenergy value (31.05 to 31.95 kcal100g-1) in relation toextra(36.42 to 38.42 kcal100g-1) and strong(38.20 to 40.17 kcal100g-1) beers. Theincrease in the original extractin beerraises theircaloric values. The presenceof honeyin the formulationincreasedthe energetic valuesincommon andextrabeersand decreasedin strong.The levelsof alcohol andcarbohydratewere predominant in thebeer energetic values,beingpossible to observeadirect relation amongthese components ofbeer and theircaloric value.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The cane sugar is important since the early days in the history of the country, following the discovery of Brazil since the colonial period, therefore, the culture has an important role in the Brazilian economy, being one of the main products. In the 1970s with the advent of the economic crisis, geopolitical and the possibility of depletion of oil, countries dependent on imported fuel, sought new energy alternatives. In Brazil, it was decreed in 1975 the creation of the National Alcohol Program - PROALCOOL, who had several years of rising, the increase of distilleries and marketing of cars powered with ethanol blend. Due to the decrease in the price of oil the importance of the program significantly reduced, returning to peak only in 1979, ie, the second phase of the program. Conceived as one of the vectors of the national response to the crisis in oil prices '70s, the program persisted at times rising in others not reaching for more than three decades. Brazil is the second largest ethanol producer, second only to the U.S., where the raw material comes from corn, which becomes a bottleneck biodiesel production because it competes with food production. New technologies developed to increase ethanol production combined with sustainability and economic viability are being held, the principal is the second generation ethanol, known as cellulosic ethanol, ethanol plus third and fourth generation.
Resumo:
In this study, organic coffee production systems energy efficiency was estimate. So, an itinerary technical was built since the deployment phase up to the organic coffee production. The inputs used (labor, machine hours, pesticides, fertilizers, etc.) converted into energy units, quantified the energy input, while the production of organic coffee beans benefited was constituted the energy output. Data collection was based on an intentional and non-probabilistic sampling. Nine farmers were interviewed whose main source of income was the coffee production and had keep records of the culture data. The balances were positive, with an energy yield of 626.465MJ.ha-1, compared to an energy expenditure of 112.998MJ.ha-1 during the crop cycle. It is concluded that organic coffee production is energy efficient.
Resumo:
The Brazilian wine industry has a remarkable characteristic that distinguishes from other markets, while the foreign market only accepts products originating from European varieties (Vitis vinifera), in Brazil, products originating from American varieties (Vitis labrusca and Vitis bourquina) and hybrids are also accepted. Dry and sweet varietal wines from varieties Bordô (dry and sweet), Isabel (sweet) e Máximo (dry) were analyzed, by the following chemical standard analyses: alcohol content; density; total and reduced dry matter; alcohol/reduced dry extract ratio; reducing sugars; total, volatile and fixed acidity; pH; total and free sulfur dioxide; and energy value. All analyzed wines presented results within the parameters set forth by Brazilian law, a positive fact, once they are commercialized. The varietal wine Máximo presented a low content of total and free sulfur dioxide, which may cause future problems with its sanity.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia de Produção - FEG
Resumo:
The current socio-economic situation has brought a need to look for alternative ways to get energy that allow reducing the high dependence on fossil fuel sources while deflect from the climate change arising from the result of the use of these energy resources. Renewable sources of energy, low and medium temperature appear as high potential of energy resources, which have a major influence on the way of life of the people to enable decentralized energy production. In Brazil, in particular, have also the need to decentralize the energy grid, currently focused on energy from water source. The current water crisis, exemplifies the urgency of betting on other energy sources, as a way to help in emergency situations such as the current one. Therefore, this study evaluates the possibility of using biomass as a heat source in a Rankine Cycle Organic where instead of water; it uses thermal fluid as working fluid, was compared the urban areas of the city of Guaratinguetá with the urban area of the metropolitan region of São Paulo. Thus, it was established two scenarios, so it was possible to establish the cycle to be used
Resumo:
This work is part of several research related to the plan of design and construction of a sustainable house. The previous researches focused on sustainable materials and it have shown that ceramic material are more interesting to improve the thermal comfort and the reduction of fees and prices of the house, making possible to construct popular home, mainly clay bricks, that have high thermal inertia and low costs, besides the fact that it is easy to find the raw materials in nature and process them. However, a major issue in using clay bricks is that it uses too many energy to be processed during the sintering (burning), a crucial part of the process that assures mechanical resistance. Alternative materials are being proposed by the researchers, as the clay bricks without the sintering mixed with Portland cement, assuring the proper resistance to the brick. Raw materials of cement, however, also need to be thermally processed in rotary kilns, in a process called clinckerization. This research was proposed for comparing the energy used by the two types of bricks and other objectives, in order to determinate which one uses less thermal energy. The intention was to compare the energy used during the sintering of regular clay bricks and the unfired bricks with 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% of Portland cement. The paper also investigated and compared the use of electrical and thermal energy of all the bricks to identify how important were the thermal stages (sintering or clinkerization) relatively to the total energy spent. At last, a resumed analysis was performed to identify the possible health damages of the many life cycles of the bricks. The conclusion was that unfired bricks with less than 40% of cement use less thermal energy to be processed. In addition, their carbon dioxides emissions were less dangerous to ... (Complete abastract click electronic access below)