998 resultados para Dental technology
Resumo:
State University Audit Report
Resumo:
State University Audit Report
Resumo:
State University Audit Report
Resumo:
State University Audit Report
Resumo:
State University Audit Report
Resumo:
State University Audit Report
Resumo:
State University Audit Report
Resumo:
State University Audit Report
Resumo:
State University Audit Report
Resumo:
State University Audit Report - Special Investigation
Resumo:
State University Audit Report - Special Investigation
Resumo:
This research involved two studies: one to determine the local geoid to obtain mean sea level elevation from a global positioning system (GPS) to an accuracy of ±2 cm, and the other to determine the location of roadside features such as mile posts and stop signs for safety studies, geographic information systems (GIS), and maintenance applications, from video imageries collected by a van traveling at traffic speed.
Resumo:
This study analyzed the development of bacterial endocarditis following dental extraction in rats with periodontal disease. Periodontal disease was produced in rats by tying silk ligatures around the two maxillary first molars, and placing the animals on a high sucrose diet. Sterile aortic valve vegetations were produced by means of a transaortic catheter, and 24 hours later the maxillary first molars were extracted. The animals were killed 72 hours after the extractions. In rats with periodontal disease induced for 10 and 14 weeks, extractions resulted in an incidence of bacterial endocarditis of 24% and 50%, respectively, most of which were due to streptococcal species (two were caused by Staphylococcus [corrected] aureus). The difference, though not statistically significant (p = 0.10, chi 2 with Yates correction), shows a trend toward increased incidence of endocarditis with increasing severity of periodontal disease. This model demonstrates that one can reliably induce bacterial endocarditis after dental extractions in rats with periodontal disease.
Resumo:
State University Audit Report
Resumo:
With the current enzootic circulation of highly pathogenic avian influenza viruses, the ability to increase global pandemic influenza vaccine production capacity is of paramount importance. This has been highlighted by, and is one of the main pillars of, the WHO Global Action Plan for Influenza Vaccines (GAP). Such capacity expansion is especially relevant in developing countries. The Vaccine Formulation Laboratory at University of Lausanne is engaged in the technology transfer of an antigen-sparing oil-in-water adjuvant in order to empower developing countries vaccine manufacturers to increase pandemic influenza vaccine capacity. In a one-year project funded by United States Department of Health and Human Services, the Vaccine Formulation Laboratory transferred the process know-how and associated equipment for the pilot-scale manufacturing of an oil-in-water adjuvant to Bio Farma, Indonesia's state-owned vaccine manufacturer, for subsequent formulation with H5N1 pandemic influenza vaccines. This paper describes the experience acquired and lessons learnt from this technology transfer project.