965 resultados para Deletion polymorphisms
Resumo:
The CDKN1A (TP21)(2) gene encodes a 21-kD protein that is a critical downstream mediator of wild-type TP53 and an important regulator of the cell cycle. Failure in the function of this gene would be expected to result in abnormal cell proliferation and transformation. Tumor-associated mutations of the coding region of the TP21 are rare. on the other hand, some TP21 polymorphisms have been identified and characterized by single base substitutions. In the present study, we investigated the potential role of TP21 gene polymorphisms in skin, head, and neck tumorigenesis. A total of 261 samples were examined by polymerase chain reaction single-strand conformational analysis, and one mutation at codon 31 and four polymorphisms in exons 2 (codon 55) and 3 [nucleotide (nt)590] and in promoter region (nt2298) were identified. In conclusion, this investigation confirmed the rarity of mutations in this gene, arguing against a role for TP21 mutations in skin, head, and neck cancers. Also, our results show significant differences in nt2298 allele frequencies between normal individuals and skin malignant tumors (P < 0.05). The results suggest that this polymorphism affects TP21 transactivator binding and may be important during the pathogenesis of skin cancer. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Most of the cultivated species of citrus have narrow genetic basis. Relationships among species and cultivars are obscured by sexual compatibility, polyembryony, apomixis and a high incidence of somatic mutations. DNA analysis is crucial in genetic studies not only for citrus breeding programs but also for characterization of hybrids and species. In this paper, single nucleotide polymorphisms ( SNPs) were investigated in 58 accessions of Citrus, hybrids and related genera. Genomic sequences of 'Pera IAC' sweet orange ( Citrus sinensis L. Osbeck) were used for primer design and selection of sequence tagged sites (STSs) for identification of SNPs. Analysis of 36 STSs showed identical sequences among 40 of the 41 sweet orange accessions studied. However, these accessions were heterozygous for many SNPs. Ten selected STSs were analyzed in 17 additional accessions from 13 species and hybrids. Comparing to the 'Pera IAC' sweet orange accession, a total of 150 polymorphic nucleotides were identified and most of the alterations were transitions ( 52.7%). The greatest number of SNPs was observed in Poncirus trifoliata ( L.) Raf. and the smallest in 'Ponkan' mandarin ( Citrus reticulata Blanco). At the intra-specific level, 'Bafa Gigante' ( Citrus sinensis L. Osbeck) was the only sweet orange accession with a divergent SNPs genotype, which corroborates the hypothesis of a hybrid origin for this accession. Although the STSs analyzed represent randomly sampled genomic sequences, they provided consistent information about the level of polymorphism and showed the potential of SNPs markers for characterization and phylogenetic studies.
Resumo:
Our objective was to determine how the distribution of red blood cell diseases is related to malaria occurrence in north Brazil, a region endemic for malaria. We evaluated the incidence of two mutations in the HFE gene, H63D and C282Y, in two study groups: a control blood donor group, with no indication of malaria infection, and a group constituted of malaria patients of four states of the Amazonian region. The hemoglobin polymorphisms were obtained by HPLC and classical laboratory methodologies, and the two mutations in the HFE gene were assayed by PCR-RFLP. We found a high frequency of alpha thalassemia, but there were no significant differences between blood donors and malaria patients. There were also no significant differences in the frequencies of HbA(2); however, the frequency of HbF was significantly different in individuals with malaria from Para and Rondonia. The mean number of reticulocytes was significantly reduced in the blood donors from the northern region, suggesting an adaptive strategy of these populations to parasitic attack by Plasmodium. Most individuals were heterozygous for the H63D allele of the HFE gene in both study groups. In the blood donors group, the greatest frequency of the H63D allele was found in Caucasians of all the states. In the malaria patients group in Rondonia, there was a high frequency of the H63D allele among the non-Caucasians. In the other states, and in the malaria patients group, the H63D allele was the most frequent among the Caucasians. Based on our results, we suggest that the maintenance of polymorphism of the mutations in the gene HFE can be explained by selective factors other than malaria, or it is due to simple allelic oscillation and by the constant gene flow among the populations in Brazil.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Background and Objectives. Thrombin activatable fibrinolysis inhibitor (TAFI) plays an important role in hemostasis, functioning as a potent fibrinolysis inhibitor. TAFI gene variations may contribute to plasma TAFI levels and thrombotic risk.Design and Methods. We sequenced a 2083-bp region of the 5 ' -regulatory region of the TAFI gene in 127 healthy subjects searching for variations, and correlated identified polymorphisms with plasma TAFI levels. TAFI polymorphisms were examined as risk factors for venous thrombosis by determining their prevalence in 388 patients with deep venous thrombosis (DVT) and in 388 controls.Results. Seven novel polymorphisms were identified: -152 A/G, -438 A/G, -530 C/T, -1053 T/C, -1102 T/G, -1690 G/A, and -1925 T/C. -152 A/G, -530 C/T and -1925 T/C were found to be in strong linkage disequilibrium, as were the -438 A/G, -1053 T/C, -1102 T/G and -1690 G/A, Plasma TAFI levels were higher in -43866/-1053CC/-1102GG/-1690AA homozygotes than In -438AG/-1053TC/-1102TG/-1690GA heterozygotes, and -438AA/-1053TT/-1102TT/-1690GG homozygotes had the lowest TAFI levels (p=0.0003). TAFI concentrations in -152AA/-530CC/-1925TT homozygotes were somewhat higher but not significantly different from levels observed for -152AG/-530CT/-1925TC heterozygotes, Taken in combination, -438AG/-1053TC/-1102TG/-1690GA and -438AA/-1053TT/-1102TT/-1690GG yielded an OR for DVT of 0.8 (95%CI: 0.6-1). in subjects aged < 35 years the OR was 0.7 (95%CI: 0.5-1.1), the OR for -152AG/-530CT/-1925TC was 1 (95%CI: 0.5-2.2) in the whole group of patients and controls, whereas in subjects aged <35 years the OR was 0.1 (95%CI: 0.02-0.9).Interpretation and Conclusions. Polymorphisms in the TAFI promoter determine plasma antigen levels and may influence the risk of venous thrombophilia. <(c)>2001, Ferrata Storti Foundation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
An interstitial deletion of 7q21 was found in a boy with mental retardation, microcephaly, convergent strabismus, micrognathia, genital anomalies, and other findings, including ectrodactyly.
Resumo:
A four-year-old girl with deletion of chromosomal band 6q24 → qter is described. Clinical features include growth and psychomotor retardation, microcephaly, convergent strabismus, bulbous nose, long philtrum, short neck and cardiopathy.
Resumo:
To assess the structural and functional significance of the N helix (residues 3-13) of avian recombinant troponin C (rTnC), we have constructed NHdel, in which residues 1-11 have been deleted, both in rTnC and in the spectral probe mutant F29W (Pearlstone, J. R., Borgford, T., Chandra, M., Oikawa, K., Kay, C. M., Herzberg, O., Moult, J., Herklotz, A., Reinach, F. C., and Smillie, L.B. (1992) Biochemistry 31, 6545-6553). Comparison of the far- and near-UV CD spectra (±Ca2+) of F29W and F29W/ NHdel and titration of the Ca2+-induced ellipticity and fluorescence changes indicates that the deletion has little effect on the global fold of the molecule but reduces the Ca2+ affinity of the N domain, but not the C domain, by 1.6-1.8-fold. Comparisons of the mutants NHdel, F29W, and F29W/NHdel with rTnC have been made using several functional assays. In reconstituted troponin-tropomyosin actomyosin subfragment 1 and myofibrillar ATPase systems, both F29W and NHdel have significantly reduced Ca2+-activated enzymic activities. These effects are cumulative in the double mutant F29W/ NHdel. On the other hand, maximal isometric tension development in Ca2+-activated reconstituted skinned fibers is not affected with F29W and NHdel, although the Ca2+ sensitivity of NHdel in this system is markedly reduced. We conclude that both mutations, NHdel and F29W, are functionally deleterious, possibly affecting interactions of the N domain with troponin I and/or T.
Resumo:
Purpose: Considering the importance of type beta thalassaemias as hereditary syndromes of high significance in different populations of Mediterranean origin and, by extension, in the Brazilian population, the objective of the present study was to determine by PCR/DGGE the gene structures responsible for neutral polymorphisms (frameworks) observed in the human beta globin gene associated with the mutations responsible for type beta thalassaemias in a sample of the Brazilian population and, more specifically, of the population of the State of São Paulo. Patients and methods: Thirty individuals with beta thalassaemic mutations were analyzed: 22 mutations were in codon 39 (C->T), 5 in IVS1-110 (G->A), 2 in IVS1-6 (T->C) and 1 in IVS1-1 (G->A). DNA was extracted and selective amplification was performed by PCR extending from position IVS1 nt 46 to IVS2 nt 126 (474 pb). The product was then analyzed by polyacrylamide gel electrophoresis on a denaturing 10-60% urea/formamide gradient. Results: The results demonstrated that, as expected, the mutations responsible for type beta thalassaemia observed in this population are of Mediterranean origin, with 73% distribution represented by codon 39,17% by IVS1-110, 7% by IVS1-6 and 3% by IVS1-1. In turn, framework distribution seems to indicate a higher frequency of Fr 1-1 in codon 39 and IVS1-110, of Fr 1-3 in IVS1-6 and of Fr 1-2 in IVS1-1. Conclusions: These results permit us to conclude that gene amplification by PCR followed by DGGE is an appropriate method for the separation of DNA molecules that differ even by a single base change and therefore can be utilized to detect the alterations observed in the human beta globin gene. This methodology shows that, using only a pair of primers, it is possible to define the frameworks that are observed in the beta globin gene.
Resumo:
In the yeast Saccharomyces cerevisiae a novel control exerted by TPS1 (=GGS1=FDP1=BYP1=CIF1=GLC6=TSS1)-encoded trehalose-6-phosphate synthase, is essential for restriction of glucose influx into glycolysis apparently by inhibiting hexokinase activity in vivo. We show that up to 50-fold overexpression of hexokinase does not noticeably affect growth on glucose or fructose in wild-type cells. However, it causes higher levels of glucose-6-phosphate, fructose-6-phosphate and also faster accumulation of fructose-1,6-bisphosphate during the initiation of fermentation. The levels of ATP and Pi correlated inversely with the higher sugar phosphate levels. In the first minutes after glucose addition, the metabolite pattern observed was intermediate between those of the tps1Δ mutant and tile wild-type strain. Apparently, during the start-up of fermentation hexokinase is more rate-limiting in the first section of glycolysis than phosphofructokinase. We have developed a method to measure the free intracellular glucose level which is based on the simultaneous addition of D-glucose and an equal concentration of radiolabelled L-glucose. Since the latter is not transported, the free intracellular glucose level can be calculated as the difference between the total B-glucose measured (intracellular + periplasmic/extracellular) and the total L-glucose measured (periplasmic/extracellular). The intracellular glucose level rose in 5 min after addition of 100 mM-glucose to 0.5-2 mM in the wild-type strain, ± 10 mm in a hxk1Δ hxk2Δ glk1Δ and 2-3 mM in a tps1Δ strain. In the strains overexpressing hexokinase PII the level of free intracellular glucose was not reduced. Overexpression of hexokinase PII never produced a strong effect on the rate of ethanol production and glucose consumption. Our results show that overexpression of hexokinase does not cause the same phenotype as deletion of Tps1. However, it mimics it transiently during the initiation of fermentation. Afterwards, the Tps1-dependent control system is apparently able to restrict Properly up to 50-fold higher hexokinase activity.