878 resultados para Degress of Freedom


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a nonlinear dynamic analysis of a flexible portal frame subjected to support excitation, which is provided by an electro-dynamical shaker. The problem is reduced to a mathematical model of four degrees of freedom and the equations of motion are derived via Lagrangian formulation. The main goal of this study is to investigate the dynamic interactions between a flexible portal frame and a non-ideal support excitation. The numerical analysis shows a complex behavior of the system, which can be observed by phase spaces, Poincaŕ sections and bifurcation diagrams. © 2012 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The vibration transmissibility characteristics of a single-degree-of- freedom (SDOF) passive vibration isolation system with different nonlinear dampers are investigated in this paper. In one configuration, the damper is assumed to be linear and viscous, and is connected to the mass so that it is perpendicular to the spring (horizontal damper). The vibration is in the direction of the spring. The second configuration is one in which the damper is in parallel with the spring but the damping force is proportional to the cube of the relative velocity across the damper (cubic damping). Both configurations are studied for small amplitudes of excitation, when some analysis can be conducted based on analytical expressions, and for large amplitudes of excitation, where the analysis is based on numerical simulations. It is found that the two nonlinear systems can outperform the linear system when force transmissibility is considered. However, for displacement transmissibility, the system with the horizontal damper exhibits some desirable properties, but the system with cubic damping does not. © 2012 Elsevier Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Studies of the structure of excited baryons are key factors to the N* program at Jefferson Lab (JLab). Within the first year of data taking with the Hall B CLAS12 detector following the 12 GeV upgrade, a dedicated experiment will aim to extract the N* electrocouplings at high photon virtualities Q 2. This experiment will allow exploration of the structure of N* resonances at the highest photon virtualities ever achieved, with a kinematic reach up to Q2 = 12 GeV2. This high-Q 2 reach will make it possible to probe the excited nucleon structures at distance scales ranging from where effective degrees of freedom, such as constituent quarks, are dominant through the transition to where nearly massless bare-quark degrees of freedom are relevant. In this document, we present a detailed description of the physics that can be addressed through N* structure studies in exclusive meson electroproduction. The discussion includes recent advances in reaction theory for extracting N* electrocouplings from meson electroproduction off protons, along with Quantum Chromodynamics (QCD)-based approaches to the theoretical interpretation of these fundamental quantities. This program will afford access to the dynamics of the nonperturbative strong interaction responsible for resonance formation, and will be crucial in understanding the nature of confinement and dynamical chiral symmetry breaking in baryons, and how excited nucleons emerge from QCD. © 2013 World Scientific Publishing Company.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEIS

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this study was to assess the validity and reliability of the Fonseca Anamnestic Index (IAF), used to assess the severity of temporomandibular disorders, applied to Brazilian women. We used a probabilistic sampling design. The participants were 700 women over 18 years of age, living in the city of Araraquara (SP). The IAF questionnaire was applied by telephone interviews. We conducted Confirmatory Factor Analysis (CFA) using Chi-Square Over Degrees of Freedom (χ2/df), Comparative Fit Index (CFI), Tucker-Lewis Index (TLI), and Root Mean Square Error of Approximation (RMSEA) as goodness of fit indices. We calculated the convergent validity, the average variance extracted (AVE) and the composite reliability (CR). Internal consistency was assessed by Cronbach's alpha coefficient (α).The factorial weights of questions 8 and 10 were below the adequate values. Thus, we refined the original model and these questions were excluded. The resulting factorial model showed appropriate goodness of fit to the sample (χ2/df = 3.319, CFI = 0.978, TLI = 0.967, RMSEA = 0.058). The convergent validity (AVE = 0.513, CR = 0.878) and internal consistency (α = 0.745) were adequate. The reduced IAF version showed adequate validity and reliability in a sample of Brazilian women.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper is concerned with what a source precisely sees when it drives a receiver such as a continuous structural object. An equivalent lumped element system consisting of masses, springs and dampers is developed to visually represent the operational structural dynamics of a single-input structure at the driving point. The development is solely based on the mobility model of the driving point response. The mobility model is mathematically inverted to give the impedance model that is suitable for lumped element modeling. The two types of structures studied are unconstrained inertial objects and constrained resilient objects. The lumped element systems presented suggest a new view to dynamics that a single-input flexible structure in operation can be decomposed into the two subsystems: a base system of single degree of freedom (or of a mass for an inertial object) whose mass is in contact with the source and an appendage system consisting of a series of oscillators each of which is attached to the base mass. The driving point response is a result of the coupling between the two subsystems. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, natural frequencies were analyzed (axial, torsional and flexural) and frequency response of a vertical rotor with a hard disk at the edge through the classical modal and complex analysis. The equation that rules the movement was obtained through the Lagrangian formulation. The model considered the effects of bending, torsion and axial deformation of the shaft, besides the gravitational and gyroscopic effects. The finite element method was used to discretize the structure into hollow cylindrical elements with 12 degrees of freedom. Mass, stiffness and gyroscopic matrices were explained consistently. The classical modal analysis, usually applied to stationary structures, does not consider an important characteristic of rotating machinery which are the methods of forward and backward whirl. Initially, through the traditional modal analysis, axial and torsional natural frequencies were obtained in a static shaft, since they do not suffer the influence of gyroscopic effects. Later research was performed by complex modal analysis. This type of tool, based on the use of complex coordinates to describe the dynamic behavior of rotating shaft, allows the decomposition of the system in two submodes, backward and forward. Thus, it is possible to clearly visualize that the orbit and direction of the precessional motion around the line of the rotating shaft is not deformed. A finite element program was developed using MATLAB (TM) and numerical simulations were performed to validate this model. Natural frequencies and directional frequency forced response (dFRF) were obtained using the complex modal analysis for a simple vertical rotor and also for a typical drill string used in the construction of oil wells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents an investigation into some practical issues that may be present in a real experiment, when trying to validate the theoretical frequency response curve of a two degree-of-freedom nonlinear system consisting of coupled linear and nonlinear oscillators. Some specific features, such as detached resonance curves, have been theoretically predicted in multi degree-of-freedom nonlinear oscillators, when subject to harmonic excitation, and the system parameters have been shown to be fundamental in achieving such features. When based on a simplified model, approximate analytical expression for the frequency response curves may be derived, which may be validated by the numerical solutions. In a real experiment, however, the practical achievability of such features was previously shown to be greatly affected by small disturbances induced by gravity and inertia, which led to some solutions becoming unstable which had been predicted to be stable. In this work a practical system configuration is proposed where such effects are reduced so that the previous limitations are overcome. A virtual experiment is carried out where a detailed multi-body model of the oscillator is assembled and the effects on the system response are investigated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A mapping scheme is presented which takes quantum operators associated to bosonic degrees of freedom into complex phase space integral kernel representatives. The procedure consists of using the Schrödinger squeezed state as the starting point for the construction of the integral mapping kernel which, due to its inherent structure, is suited for the description of second quantized operators. Products and commutators of operators have their representatives explicitly written which reveal new details when compared to the usual q-p phase space description. The classical limit of the equations of motion for the canonical pair q-p is discussed in connection with the effect of squeezing the quantum phase space cellular structure. © 1993.