775 resultados para Data Mining, Rough Sets, Multi-Dimension, Association Rules, Constraint


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solar wind almost disappeared on May 11,1999: the solar wind plasma density and' dynamic pressure were less than 1 cm(-3) and 0.1 nPa respectively, while the interplanetary magnetic field was northward. The polar ionospheric data observed by the multi-instruments at Zhongshan Station in Antarctica on such special event day was compared with those of the control day (May 14). It was shown that geomagnetic activity was very quiet on May 11 at Zhongshan. The magnetic pulsation, which usually occurred at about magnetic noon, did not appear. The ionosphere was steady and stratified, and the F-2 layer spread very little. The critical frequency of dayside F-2 layer, f(0)F(2), was larger than that of control day, and the peak of f(0)F(2) appeared 2 hours earlier. The ionospheric drift velocity was less than usual. There were intensive auroral E-s appearing at magnetic noon. All this indicates that the polar ionosphere was extremely quiet and geomagnetic field was much more dipolar on May 11. There were some signatures of auroral substorm before midnight, such as the negative deviation of the geomagnetic H component, accompanied with auroral E-s and weak Pc3 pulsation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Study Design: Data mining of single nucleotide polymorphisms (SNPs) in gene pathways related to spinal cord injury (SCI). Objectives: To identify gene polymorphisms putatively implicated with neuronal damage evolution pathways, potentially useful to SCI study. Setting: Departments of Psychiatry and Orthopedics, Faculdade de Medicina, Universidade de Sao Paulo, Brazil. Methods: Genes involved with processes related to SCI, such as apoptosis, inflammatory response, axonogenesis, peripheral nervous system development and axon ensheathment, were determined by evaluating the `Biological Process` annotation of Gene Ontology (GO). Each gene of these pathways was mapped using MapViewer, and gene coordinates were used to identify their polymorphisms in the SNP database. As a proof of concept, the frequency of subset of SNPs, located in four genes (ALOX12, APOE, BDNF and NINJ1) was evaluated in the DNA of a group of 28 SCI patients and 38 individuals with no SC lesions. Results: We could identify a total of 95 276 SNPs in a set of 588 genes associated with the selected GO terms, including 3912 nucleotide alterations located in coding regions of genes. The five non-synonymous SNPs genotyped in our small group of patients, showed a significant frequency, reinforcing their potential use for the investigation of SCI evolution. Conclusion: Despite the importance of SNPs in many aspects of gene expression and protein activity, these gene alterations have not been explored in SCI research. Here we describe a set of potentially useful SNPs, some of which could underlie the genetic mechanisms involved in the post trauma spinal cord damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Feature selection is one of important and frequently used techniques in data preprocessing. It can improve the efficiency and the effectiveness of data mining by reducing the dimensions of feature space and removing the irrelevant and redundant information. Feature selection can be viewed as a global optimization problem of finding a minimum set of M relevant features that describes the dataset as well as the original N attributes. In this paper, we apply the adaptive partitioned random search strategy into our feature selection algorithm. Under this search strategy, the partition structure and evaluation function is proposed for feature selection problem. This algorithm ensures the global optimal solution in theory and avoids complete randomness in search direction. The good property of our algorithm is shown through the theoretical analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este artigo relata resultados de uma pesquisa que teve como objetivo investigar as representações sociais da infertilidade feminina, entre mulheres de diferentes estratos sociais. Foram entrevistadas 180 mulheres, com idade variando entre 18 e 40 anos, sendo 90 moradoras de bairros populares, e 90 moradoras de dois bairros considerados de classe-média. Cada grupo foi dividido em 3 subgrupos: a) 30 mulheres casadas, com pelo menos um filho biológico; b) 30 mulheres casadas há pelo menos 1 ano, sem filhos; c) 30 mulheres solteiras, sem filhos. Para a coleta de dados utilizou-se a técnica de associação livre, tendo como expressão geradora "mulher que não pode ter filhos", além de perguntas específicas sobre a temática de interesse. Os dados mostraram como principais elementos do campo representacional tristeza, incompleta, frustração, cobrança dos outros, solidão, pessoa inferior, adoção, busca de soluções e não é problema, confirmando a permanência da concepção da infertilidade como uma condição estigmatizante para a mulher.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A growing number of predicting corporate failure models has emerged since 60s. Economic and social consequences of business failure can be dramatic, thus it is not surprise that the issue has been of growing interest in academic research as well as in business context. The main purpose of this study is to compare the predictive ability of five developed models based on three statistical techniques (Discriminant Analysis, Logit and Probit) and two models based on Artificial Intelligence (Neural Networks and Rough Sets). The five models were employed to a dataset of 420 non-bankrupt firms and 125 bankrupt firms belonging to the textile and clothing industry, over the period 2003–09. Results show that all the models performed well, with an overall correct classification level higher than 90%, and a type II error always less than 2%. The type I error increases as we move away from the year prior to failure. Our models contribute to the discussion of corporate financial distress causes. Moreover it can be used to assist decisions of creditors, investors and auditors. Additionally, this research can be of great contribution to devisers of national economic policies that aim to reduce industrial unemployment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A growing number of predicting corporate failure models has emerged since 60s. Economic and social consequences of business failure can be dramatic, thus it is not surprise that the issue has been of growing interest in academic research as well as in business context. The main purpose of this study is to compare the predictive ability of five developed models based on three statistical techniques (Discriminant Analysis, Logit and Probit) and two models based on Artificial Intelligence (Neural Networks and Rough Sets). The five models were employed to a dataset of 420 non-bankrupt firms and 125 bankrupt firms belonging to the textile and clothing industry, over the period 2003–09. Results show that all the models performed well, with an overall correct classification level higher than 90%, and a type II error always less than 2%. The type I error increases as we move away from the year prior to failure. Our models contribute to the discussion of corporate financial distress causes. Moreover it can be used to assist decisions of creditors, investors and auditors. Additionally, this research can be of great contribution to devisers of national economic policies that aim to reduce industrial unemployment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benchmarking is an important tool to organisations to improve their productivity, product quality, process efficiency or services. From Benchmarking the organisations could compare their performance with competitors and identify their strengths and weaknesses. This study intends to do a benchmarking analysis on the main Iberian Sea ports with a special focus on their container terminals efficiency. To attain this, the DEA (data envelopment analysis) is used since it is considered by several researchers as the most effective method to quantify a set of key performance indicators. In order to reach a more reliable diagnosis tool the DEA is used together with the data mining in comparing the sea ports operational data of container terminals during 2007.Taking into account that sea ports are global logistics networks the performance evaluation is essential to an effective decision making in order to improve their efficiency and, therefore, their competitiveness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O trabalho que a seguir se apresenta tem como objectivo descrever a criação de um modelo que sirva de suporte a um sistema de apoio à decisão sobre o risco inerente à execução de projectos na área das Tecnologias de Informação (TI) recorrendo a técnicas de mineração de dados. Durante o ciclo de vida de um projecto, existem inúmeros factores que contribuem para o seu sucesso ou insucesso. A responsabilidade de monitorizar, antever e mitigar esses factores recai sobre o Gestor de Projecto. A gestão de projectos é uma tarefa difícil e dispendiosa, consome muitos recursos, depende de numerosas variáveis e, muitas vezes, até da própria experiência do Gestor de Projecto. Ao ser confrontado com as previsões de duração e de esforço para a execução de uma determinada tarefa, o Gestor de Projecto, exceptuando a sua percepção e intuição pessoal, não tem um modo objectivo de medir a plausibilidade dos valores que lhe são apresentados pelo eventual executor da tarefa. As referidas previsões são fundamentais para a organização, pois sobre elas são tomadas as decisões de planeamento global estratégico corporativo, de execução, de adiamento, de cancelamento, de adjudicação, de renegociação de âmbito, de adjudicação externa, entre outros. Esta propensão para o desvio, quando detectada numa fase inicial, pode ajudar a gerir melhor o risco associado à Gestão de Projectos. O sucesso de cada projecto terminado foi qualificado tendo em conta a ponderação de três factores: o desvio ao orçamentado, o desvio ao planeado e o desvio ao especificado. Analisando os projectos decorridos, e correlacionando alguns dos seus atributos com o seu grau de sucesso o modelo classifica, qualitativamente, um novo projecto quanto ao seu risco. Neste contexto o risco representa o grau de afastamento do projecto ao sucesso. Recorrendo a algoritmos de mineração de dados, tais como, árvores de classificação e redes neuronais, descreve-se o desenvolvimento de um modelo que suporta um sistema de apoio à decisão baseado na classificação de novos projectos. Os modelos são o resultado de um extensivo conjunto de testes de validação onde se procuram e refinam os indicadores que melhor caracterizam os atributos de um projecto e que mais influenciam o risco. Como suporte tecnológico para o desenvolvimento e teste foi utilizada a ferramenta Weka 3. Uma boa utilização do modelo proposto possibilitará a criação de planos de contingência mais detalhados e uma gestão mais próxima para projectos que apresentem uma maior propensão para o risco. Assim, o resultado final pretende constituir mais uma ferramenta à disposição do Gestor de Projecto.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho consiste no desenvolvimento de um Sistema de Apoio à Criminologia – SAC, onde se pretende ajudar os detectives/analistas na prevenção proactiva da criminalidade e na gestão dos seus recursos materiais e humanos, bem como impulsionar estudos sobre a alta incidência de determinados tipos de crime numa dada região. Historicamente, a resolução de crimes tem sido uma prerrogativa da justiça penal e dos seus especialistas e, com o aumento da utilização de sistemas computacionais no sistema judicial para registar todos os dados que dizem respeito a ocorrências de crimes, dados de suspeitos e vítimas, registo criminal de indivíduos e outros dados que fluem dentro da organização, cresce a necessidade de transformar estes dados em informação proveitosa no combate à criminalidade. O SAC tira partido de técnicas de extracção de conhecimento de informação e aplica-as a um conjunto de dados de ocorrências de crimes numa dada região e espaço temporal, bem como a um conjunto de variáveis que influenciam a criminalidade, as quais foram estudadas e identificadas neste trabalho. Este trabalho é constituído por um modelo de extracção de conhecimento de informação e por uma aplicação que permite ao utilizador fornecer um conjunto de dados adequado, garantindo a máxima eficácia do modelo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last years there has been a huge growth and consolidation of the Data Mining field. Some efforts are being done that seek the establishment of standards in the area. Included on these efforts there can be enumerated SEMMA and CRISP-DM. Both grow as industrial standards and define a set of sequential steps that pretends to guide the implementation of data mining applications. The question of the existence of substantial differences between them and the traditional KDD process arose. In this paper, is pretended to establish a parallel between these and the KDD process as well as an understanding of the similarities between them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last years there has been a huge growth and consolidation of the Data Mining field. Some efforts are being done that seek the establishment of standards in the area. Included on these efforts there can be enumerated SEMMA and CRISP-DM. Both grow as industrial standards and define a set of sequential steps that pretends to guide the implementation of data mining applications. The question of the existence of substantial differences between them and the traditional KDD process arose. In this paper, is pretended to establish a parallel between these and the KDD process as well as an understanding of the similarities between them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present research paper presents five different clustering methods to identify typical load profiles of medium voltage (MV) electricity consumers. These methods are intended to be used in a smart grid environment to extract useful knowledge about customer’s behaviour. The obtained knowledge can be used to support a decision tool, not only for utilities but also for consumers. Load profiles can be used by the utilities to identify the aspects that cause system load peaks and enable the development of specific contracts with their customers. The framework presented throughout the paper consists in several steps, namely the pre-processing data phase, clustering algorithms application and the evaluation of the quality of the partition, which is supported by cluster validity indices. The process ends with the analysis of the discovered knowledge. To validate the proposed framework, a case study with a real database of 208 MV consumers is used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work is proposed the design of a system to create and handle Electric Vehicles (EV) charging procedures, based on intelligent process. Due to the electrical power distribution network limitation and absence of smart meter devices, Electric Vehicles charging should be performed in a balanced way, taking into account past experience, weather information based on data mining, and simulation approaches. In order to allow information exchange and to help user mobility, it was also created a mobile application to assist the EV driver on these processes. This proposed Smart ElectricVehicle Charging System uses Vehicle-to-Grid (V2G) technology, in order to connect Electric Vehicles and also renewable energy sources to Smart Grids (SG). This system also explores the new paradigm of Electrical Markets (EM), with deregulation of electricity production and use, in order to obtain the best conditions for commercializing electrical energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the electricity market liberalization, distribution and retail companies are looking for better market strategies based on adequate information upon the consumption patterns of its electricity customers. In this environment all consumers are free to choose their electricity supplier. A fair insight on the customer´s behaviour will permit the definition of specific contract aspects based on the different consumption patterns. In this paper Data Mining (DM) techniques are applied to electricity consumption data from a utility client’s database. To form the different customer´s classes, and find a set of representative consumption patterns, we have used the Two-Step algorithm which is a hierarchical clustering algorithm. Each consumer class will be represented by its load profile resulting from the clustering operation. Next, to characterize each consumer class a classification model will be constructed with the C5.0 classification algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electricity markets are complex environments with very particular characteristics. MASCEM is a market simulator developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations. This paper presents a new proposal for the definition of MASCEM players’ strategies to negotiate in the market. The proposed methodology is multiagent based, using reinforcement learning algorithms to provide players with the capabilities to perceive the changes in the environment, while adapting their bids formulation according to their needs, using a set of different techniques that are at their disposal.