997 resultados para Cretaceous of Brasil
Resumo:
This study is a contribution of the Spanish Ministry of Economy and Competitiveness project CGL2011-23948/BTE.
Resumo:
At two locations in the Atlantic Ocean (DSDP Sites 367 and 530) early to middle Cretaceous organic-carbon-rich beds (black shales) were found to have significantly lower delta15N values (lower 15N/14N ratios) than adjacent organic-carbon-poor beds (white limestones or green claystones). While these lithologies are of marine origin, the black strata in particular have delta15N values that are significantly lower than those previously found in the marine sediment record and most contemporary marine nitrogen pools. In contrast, black, organic-carbon-rich beds at a third site (DSDP Site 603) contain predominantly terrestrial organic matter and have C- and N-isotopic compositions similar to organic matter of modern terrestrial origin. The recurring 15N depletion in the marine-derived Cretaceous sequences prove that the nitrogen they contain is the end result of an episodic and atypical biogeochemistry. Existing isotopic and other data indicate that the low 15N relative abundance is the consequence of pelagic rather than post-depositional processes. Reduced ocean circulation, increased denitrification, and, hence, reduced euphoric zone nitrate availability may have led to Cretaceous phytoplankton assemblages that were periodically dominated by N2-fixing blue-green algae, a possible source of this sediment 15N-depletion. Lack of parallel isotopic shifts in Cretaceous terrestrially-derived nitrogen (Site 603) argues that the above change in nitrogen cycling during this period did not extend beyond the marine environment.
Resumo:
Sediments recovered at lower bathyal ODP Site 1049 on Blake Nose (Northwestern Atlantic) offer an opportunity to study environmental changes at the Cretaceous/Paleogene (K/P) boundary relatively close to the Chicxulub impact structure on the Yucatan peninsula, Mexico. In Hole 1049C, the boundary is located at the base of a 9-cm-thick layer with abundant spherules, considered to be impact ejecta. Uppermost Maastrichtian oozes below, and lowermost Danian pelagic oozes above the spherulebed contain well-preserved bathyal benthic foraminifera. The spherule-bed itself, in contrast, contains a mixture of shallow (neritic) and deeper (bathyal) species, and specimens vary strongly in preservation. This assemblage was probably formed by reworking and down-slope transport triggered by the K/P impact. Across the spherule-bed (i.e., the K/P boundary) only ~7% of benthic foraminiferal species became extinct, similar to the low extinction rates of benthic foraminifera worldwide. Quantitative analysis of benthic foraminiferal assemblages and morphogroups in the >63-µm size fraction indicates a relatively eutrophic, stable environment during the latest Maastrichtian, interrupted by a sudden decrease in the food supply to the benthos at the K/P boundary and a decrease in diversity of the faunas, followed by a stepped recovery during the earliest Danian. The recovery was probably linked to the gradual recovery of surface-dwelling primary producers.