1000 resultados para Counting >42 µm fraction
Resumo:
In the collective monograph results of geological and geophysical studies in the Tadjura Rift carried out by conventional outboard instruments and from deep/sea manned submersibles "Pisces" in winter 1983-1984 are reported. Main features of rift tectonics, geology, petrology, and geochemistry of basalts from the rift are under consideration. An emphasis is made on lithology, stratigraphy, and geochemistry of bottom sediments. Roles of terrigenous, edafogenic, biogenic, and hydrothermal components in formation of bottom sediments from the rift zone are shown.
Resumo:
Digitized records of optical desnity in many North Atlantic cores exihibt rapid changes from lighter to darker extrems, typically within less than 200 years, at the 5d/5e, 5b/5c and 4/5 boundaries. In cores from DSDP site 609 the changes from lighter to darker color coincide with increasing in relative abundance of Neogloboquadrina pachyderma (l.c.), with increases in abundances of lithic grains and with decreasing in carbonate content. The rapid changes to dark color, therefore, are climate-driven and correspond to a lowering of seas surface temperatures and to increases in amounts of ice rafted debris relative to biogenic carbonate. At the 5d&4c boundary, delta18O in N. pachyderma (l.c.) increases abruptly with the change to darker sediments as expected for cooler sea surface temperatures. At the 4/5 boundary, however, delta18O decreases with the change to darker sediment and cooler sea surface temperatures, suggesting that a layer of fresh surface water was present in the North Atlantic at that time.
Recent ostracods in surface sediment samples from Admiralty Bay, King George Island, West Antarctica
Resumo:
Ostracods from Admiralty Bay on King George Island (South Shetland Islands) represent 29 podocopid species, belonging to 19 genera, one cladocopid and six myodocopid species. They were recovered from Recent marine and/or glacio-marine sediment samples from water depths of up to 520 m. These ostracods constitute a variable assemblage, which is overall typical for the Antarctic environment. Shallow-water assemblages tend to be more variable in terms of frequencies and species richness than deep-water assemblages. The later are low in numbers and remain relatively high diversities. Overall, no linear relation between ostracod assemblage-composition and environmental features analyzed was recognized.
Resumo:
Laser ablation inductively coupled plasma-mass spectrometry microanalysis of fossil and live Globigerinoides ruber from the eastern Indian Ocean reveals large variations of Mg/Ca composition both within and between individual tests from core top or plankton pump samples. Although the extent of intertest and intratest compositional variability exceeds that attributable to calcification temperature, the pooled mean Mg/Ca molar values obtained for core top samples between the equator and >30°S form a strong exponential correlation with mean annual sea surface temperature (Mg/Ca mmol/mol = 0.52 exp**0.076SST°C, r**2 = 0.99). The intertest Mg/Ca variability within these deep-sea core top samples is a source of significant uncertainty in Mg/Ca seawater temperature estimates and is notable for being site specific. Our results indicate that widely assumed uncertainties in Mg/Ca thermometry may be underestimated. We show that statistical power analysis can be used to evaluate the number of tests needed to achieve a target level of uncertainty on a sample by sample case. A varying bias also arises from the presence and varying mix of two morphotypes (G. ruber ruber and G. ruber pyramidalis), which have different mean Mg/Ca values. Estimated calcification temperature differences between these morphotypes range up to 5°C and are notable for correlating with the seasonal range in seawater temperature at different sites.
Resumo:
Detailed faunal, isotopic, and lithic marine records provide new insight into the stability and climate progression of the last interglacial period, Marine Isotope Stage (MIS) 5, which peaked approximately 125,000 years ago. In the eastern subpolar North Atlantic, at the latitude of Ireland, interglacial warmth of the ice volume minimum of substage 5e (MIS 5e) lasted ~10,000 years (10 ka) and its demise occurred in two cooling steps. The first cooling step marked the end of the climatic optimum, which was 2-3 ka long. Minor ice rafting accompanied each cooling step; the second, larger, step encompassing cold events C26 and C25 was previously identified in the northwestern Atlantic. Approximately 4 °C of cooling occurred between peak interglacial warmth and C25, and the region experienced an additional temporary cooling of at least 1-2 °C during C24, a cooling event associated with widespread ice rafting in the North Atlantic. Beginning with C24, MIS 5 was characterized by oscillations of at least 1-2 °C superimposed on a generally cool baseline. The results of this study imply that the marine climatic optimum of the last interglacial was shorter than previously thought. The finding that the eastern subpolar North Atlantic cooled significantly before C24 reconciles terrestrial evidence for progressive climate deterioration at similar and lower latitudes with marine conditions. Our results also demonstrate a close association between modest ice rafting, cooling, and deep ocean circulation even during the peak of MIS 5e and in the earliest stages of ice growth.
Resumo:
Site 958 was drilled to monitor the late Neogene history of both continental aridity in northwestern Africa and the Canary Current distant from nearshore upwelling. Based on magnetostratigraphy, biostratigraphic datums, variations in carbonate, coarse fraction components, and the species composition of planktonic foraminifers, as well as using the d18O records of Globigerinoides ruber (white), we established a splice between Holes 958A and 958B and a stratigraphic age scale deciphering Milankovitch cycles. Over the last 630 k.y., sedimentation rates amount to 2.9 cm/k.y., and to 2.05-2.53 cm/k.y. back to the base of the Pleistocene. Extremely low rates of 0.4 cm/k.y. and a reworking of fossils mark the late Pliocene. The first continuous, long, sea-surface temperature (SST) record from the center of the Canary Current, which is based on foraminifer species census data, depicts a general temperature decrease in the late Pliocene, lower SST and high seasonalities of up to 6°C ~2.0-1.6 Ma, a warmer interval from 1.6 Ma to ~0.85 Ma, again lower SST and higher seasonalities until 0.33 or 0.26 Ma, and a final warmer interval, lasting until at least 50 ka, possibly reflecting the attenuated dynamics of the Canary Current. Especially over the last 400 k.y., since Stage 11, glacial stages are hardly reflected by cold SST cycles, except for various abrupt and extremely short cooling events amounting to D6°C, which possibly result from North Atlantic Heinrich events. Similar, but not necessarily synchronous, events of short-term, extremely high values occur in the paleoproductivity and (d13Cbased) paleonutrient records, which indicate a generally low primary production averaging to 180 g C m**-2 yr**-1 at 50-330 ka and about 300 g C m**-2 yr**-1 back to the base of the Pleistocene. Near 1.2-1.6 Ma, the grain-size and magnetic susceptibility records document a significant increase in the discharge of south Saharan/Sahelian dust, possibly linked to increasing aridity.
Resumo:
A multiproxy analysis based on planktic foraminiferal abundances, derived SSTs, and stable planktic isotopes measurements together with alkenone abundances and Uk'37 SSTs was performed on late MIS 6 to early MIS 5d sediment recovered from Site 975 (ODP Leg 161) in the South Balearic Islands basin (Western Mediterranean) with emphasis on reconstructing the climate progression of the last interglacial period. A number of abrupt climate changes related to alternative influence of nutrient rich northern and oligotrophic southern water masses were revealed. Heinrich event 11 and cooling events C27, C26, C25, C24, C23, which have been previously described in the North Atlantic, were recognized. However, in comparison to the eastern North Atlantic mid-latitude region, events C27 and C26 at Site 975 seem to be significantly more pronounced. Together with evidence of a two-phase climate optimum with maximum SSTs reached during its later phase, this implies a close similarity in climate dynamics between the Western Mediterranean and the Nordic seas. We propose that postglacial effects in the Nordic seas had an influence on the western Mediterranean climate via atmospheric circulation and that these effects competed with the insolation force.
Resumo:
The Ontong Java Plateau in the western equatorial Pacific contains a deposition record of biserial planktonic foraminifers concentrated in the Paleogene, in which frequencies up to 67% of the planktonic foraminifers are reported, and in the late Neogene, in which a maximum frequency of 48% is reported. Biserial planktonic foraminifers are rare or absent in the latest Oligocene and early Miocene, an interval characterized by warm bottom water and low temperature gradients. These conditions supported a surface assemblage rather than the biserial planktonic foraminifers, whose Neogene species inhabited the oxygen minimum at intermediate depths in the upper water column. Biserial planktonic foraminifers tend to be of high frequency during high sea stands and low frequency during low sea level, presumably in response to the strengthening or weakening of the oxygen minimum. Species extinction and evolution events occur during low sea stands in the Neogene and sometimes correspond to strong reflection horizons of the plateau's seismic stratigraphy. The biserial species are useful biostratigraphic indexes in the plateau section. The last occurrence (LO) of Streptochilus martini corresponds with the Eocene/Oligocene boundary; S. subglobigerum without Neogloboquadrina acostaensis indicates Zone N15; S. latum occurs from the middle of Zone N16 to near the top of Zone N17; S. globigerum ranges from near the top of Zone N17 to the middle of Zone N19/N20; and the S. globulosum continuous range begins just before the first left-to-right coiling change of Pulleniatina, but the species becomes rare in the Pleistocene section.
Resumo:
A quantative study was made of silicoflagellates recovered from Sites 642 (lower Miocene-upper Pliocene), 643 (lower Miocene-upper Miocene), and 644 (upper Pliocene-Quaternary) on the Voring Plateau. Although disconformities are present in these sequences, they represent a much more complete record of the Neogene than was recovered previously in the Norwegian Sea by DSDP Leg 38. Silicoflagellates are rare or absent for glacial sequences younger than 2.65 Ma, and generally sparse and poorly preserved in the lower upper Pliocene and upper Miocene. Lower and middle Miocene assemblages are diverse and generally well preserved. Temporal changes in the silicoflagellate assemblage are indicative of major paleoceanographic changes in the Norwegian Sea. A regional zonation for the Neogene of the Norwegian Sea is proposed, consisting of eleven zones: Naviculopsis lata Zone, N. quadrata Zone (emended), N. ponticula Zone (emended), Distephanus speculum hemisphaericus Zone (new), Caryocha ernestinae Zone (new), Bachmannocena circulus var. apiculata/Caryocha Zone (new), Distephanus crux scutulatus Zone (new), Bachmannocena diodon nodosa Zone (new), Distephanus boliviensis Zone (new), Ds. jimlingii Zone (elevated from subzonal to zonal status) with Subzones a and b (new), and Ds. speculum Zone (new). The ranges and abundances of over 100 species and morphotypes are tabulated.
Resumo:
Planktonic foraminiferal assemblages and artificial neural network estimates of sea-surface temperature (SST) at ODP Site 1123 (41°47.2'S, 171°29.9'W; 3290 m deep), east of New Zealand, reveal a high-resolution history of glacial-interglacial (G-I) variability at the Subtropical Front (STF) for the last 1.2 million years, including the Mid-Pleistocene climate transition (MPT). Most G-I cycles of ~100 kyr duration have short periods of cold glacial and warm deglacial climate centred on glacial terminations, followed by long temperate interglacial periods. During glacial-deglacial transitions, maximum abundances of subantarctic and subtropical taxa coincide with SST minima and maxima, and lead ice volume by up to 8 kyrs. Such relationships reflect the competing influence of subantarctic and subtropical surface inflows during glacial and deglacial periods, respectively, suggesting alternate polar and tropical forcing of southern mid-latitude ocean climate. The lead of SSTs and subtropical inflow over ice volume points to tropical forcing of southern mid-latitude ocean-climate during deglacial warming. This contrasts with the established hypothesis that southern hemisphere ocean climate is driven by the influence of continental glaciations. Based on wholesale changes in subantarctic and subtropical faunas, the last 1.2 million years are subdivided into 4-distinct periods of ocean climate. 1) The pre-MPT (1185-870 ka) has high amplitude 41-kyr fluctuations in SST, superimposed on a general cooling trend and heightened productivity, reflecting long-term strengthening of subantarctic inflow under an invigorated Antarctic Circumpolar Current. 2) The early MPT (870-620 ka) is marked by abrupt warming during MIS 21, followed by a period of unstable periodicities within the 40-100 kyr orbital bands, decreasing SST amplitudes, and long intervals of temperate interglacial climate punctuated by short glacial and deglacial phases, reflecting lower meridional temperature gradients. 3) The late MPT (620-435 ka) encompasses an abrupt decrease in the subantarctic inflow during MIS 15, followed by a period of warm equable climate. Poorly defined, low amplitude G-I variations in SSTs during this interval are consistent with a relatively stable STF and evenly balanced subantarctic and subtropical inflows, possibly in response to smaller, less dynamic polar icesheets. 4) The post-MPT (435-0 ka) is marked by a major climatic deterioration during MIS 12, and a return to higher amplitude 100 kyr-frequency SST variations, superimposed on a long term trend towards cooler SSTs and increased mixed-layer productivity as the subantarctic inflow strengthened and polar icesheets expanded.
Resumo:
New geochemical proxy data from Bermuda Rise piston cores reveal ocean and climate conditions in the northern Sargasso Sea during marine isotope stage 3. Using ?18O on the planktonic foraminifer Globigerinoides ruber, we can correlate explicitly with every stadial/interstadial change in Greenland ice between ~32 and 58 ka. These data suggest repetitive changes of ~4°C in the annual average sea surface temperature (SST), with maximum cooling comparable to or greater than SST during glacial maximum conditions. The extent of SST depression is about the same for typical stadial events and for Heinrich events 4 and 5, which we have identified on the Bermuda Rise by traces of ice rafting. Benthic foraminiferal d13C decreases during every stadial event, consistent with reduced production of the deepest component of North Atlantic Deep Water and shoaling of its interface with Antarctic Bottom Water. This interpretation is supported by benthic Cd/Ca data from the climate cycle associated with interstadial 8.
Resumo:
The Indo-Pakistan Continental Margin represents an extreme habitat for benthic foraminifera since (1) high fluxes of organic matter offer a high food supply, (2) an intensified oxygen minimum Zone (OMZ) develops from the base of the euphotic Zone to water depths over 1000 m and (3) the monsoon causes seasonal oscillations within the biogeochemical cycle. At three stations from the uppermost (233 m), the central (658 m) and the deeper part (902 m) of the OMZ, living benthic foraminiferal assemblages were analyzed within the uppermost 10 cm of the sediment column. The ecologic structure of foraminiferal faunas is characterized by high abundances at the sediment surface and a rapid decrease within the uppermost 2 cm of the sediment column. Despite dysoxic to suboxic bottom-water conditions, stained benthic foraminifera occurred in all cores down to the base of the sampled interval. High surface abundances, a high dominance by few endobenthic calcareous taxa and a low diversity, which may result from specific physiological adaptations to almost anoxic conditions and the absence of predators, are recognized in the central part of the OMZ. The upper and lower margins of the OMZ are characterized by higher diversities and lower abundances. The shallowest part of the OMZ is dominated by calcareous foraminifera, whereas agglutinated species are the most common taxa in the deeper part. Comparisons with previous studies show that benthic foraminiferal assemblages, that are influenced by seasonal oscillations controlling food supply and/or the availability of oxygen, show variations in faunal density and species composition. Since there is strong evidence that oxygen is not a limiting factor for some taxa, it seems more likely that the distribution pattern of benthic foraminifera is preferentially controlled by trophic conditions.