822 resultados para Conservation Tillage
Resumo:
Nonnative brook trout Salvelinus fontinalis are abundant in Pine Creek and its main tributary, Bogard Spring Creek, California. These creeks historically provided the most spawning and rearing habitat for endemic Eagle Lake rainbow trout Oncorhynchus mykiss aquilarum. Three-pass electrofishing removal was conducted in 2007–2009 over the entire 2.8-km length of Bogard Spring Creek to determine whether brook trout removal was a feasible restoration tool and to document the life history characteristics of brook trout in a California meadow stream. After the first 2 years of removal, brook trout density and biomass were severely reduced from 15,803 to 1,192 fish/ha and from 277 to 31 kg/ha, respectively. Average removal efficiency was 92–97%, and most of the remaining fish were removed in the third year. The lack of a decrease in age-0 brook trout abundance between 2007 and 2008 after the removal of more than 4,000 adults in 2007 suggests compensatory reproduction of mature fish that survived and higher survival of age-0 fish. However, recruitment was greatly reduced after 2 years of removal and is likely to be even more depressed after the third year of removal assuming that immigration of fish from outside the creek continues to be minimal. Brook trout condition, growth, and fecundity indicated a stunted population at the start of the study, but all three features increased significantly every year, demonstrating compensatory effects. Although highly labor intensive, the use of electrofishing to eradicate brook trout may be feasible in Bogard Spring Creek and similar small streams if removal and monitoring are continued annually and if other control measures (e.g., construction of barriers) are implemented. Our evidence shows that if brook trout control measures continue and if only Eagle Lake rainbow trout are allowed access to the creek, then a self-sustaining population ofEagle Lake rainbow trout can become reestablished
Resumo:
Rivers are among the most diverse and threatened ecosystems on Earth, as they are impacted by increasing human pressures. Because rivers provide essential goods and services, conservation of these ecosystems is a requisite for sustainable development. Therefore, we must seek ways to conserve healthy rivers and to restore degraded ones
Resumo:
The integration of ecological and evolutionary data is highly valuable for conservation planning. However, it has been rarely used in the marine realm, where the adequate design of marine protected areas (MPAs) is urgently needed. Here, we examined the interacting processes underlying the patterns of genetic structure and demographic strucuture of a highly vulnerable Mediterranean habitat-forming species (i.e. Paramuricea clavata (Risso, 1826)), with particular emphasis on the processes of contemporary dispersal, genetic drift, and colonization of a new population. Isolation by distance and genetic discontinuities were found, and three genetic clusters were detected; each submitted to variations in the relative impact of drift and gene flow. No founder effect was found in the new population. The interplay of ecology and evolution revealed that drift is strongly impacting the smallest, most isolated populations, where partial mortality of individuals was highest. Moreover, the eco-evolutionary analyses entailed important conservation implications for P. clavata. Our study supports the inclusion of habitat-forming organisms in the design of MPAs and highlights the need to account for genetic drift in the development of MPAs. Moreover, it reinforces the importance of integrating genetic and demographic data in marine conservation.
Resumo:
Genetic diversity is one of the levels of biodiversity that the World Conservation Union (IUCN) has recognized as being important to preserve. This is because genetic diversity is fundamental to the future evolution and to the adaptive flexibility of a species to respond to the inherently dynamic nature of the natural world. Therefore, the key to maintaining biodiversity and healthy ecosystems is to identify, monitor and maintain locally-adapted populations, along with their unique gene pools, upon which future adaptation depends. Thus, conservation genetics deals with the genetic factors that affect extinction risk and the genetic management regimes required to minimize the risk. The conservation of exploited species, such as salmonid fishes, is particularly challenging due to the conflicts between different interest groups. In this thesis, I conduct a series of conservation genetic studies on primarily Finnish populations of two salmonid fish species (European grayling, Thymallus thymallus, and lake-run brown trout, Salmo trutta) which are popular recreational game fishes in Finland. The general aim of these studies was to apply and develop population genetic approaches to assist conservation and sustainable harvest of these populations. The approaches applied included: i) the characterization of population genetic structure at national and local scales; ii) the identification of management units and the prioritization of populations for conservation based on evolutionary forces shaping indigenous gene pools; iii) the detection of population declines and the testing of the assumptions underlying these tests; and iv) the evaluation of the contribution of natural populations to a mixed stock fishery. Based on microsatellite analyses, clear genetic structuring of exploited Finnish grayling and brown trout populations was detected at both national and local scales. Finnish grayling were clustered into three genetically distinct groups, corresponding to northern, Baltic and south-eastern geographic areas of Finland. The genetic differentiation among and within population groups of grayling ranged from moderate to high levels. Such strong genetic structuring combined with low genetic diversity strongly indicates that genetic drift plays a major role in the evolution of grayling populations. Further analyses of European grayling covering the majority of the species’ distribution range indicated a strong global footprint of population decline. Using a coalescent approach the beginning of population reduction was dated back to 1 000-10 000 years ago (ca. 200-2 000 generations). Forward simulations demonstrated that the bottleneck footprints measured using the M ratio can persist within small populations much longer than previously anticipated in the face of low levels of gene flow. In contrast to the M ratio, two alternative methods for genetic bottleneck detection identified recent bottlenecks in six grayling populations that warrant future monitoring. Consistent with the predominant role of random genetic drift, the effective population size (Ne) estimates of all grayling populations were very low with the majority of Ne estimates below 50. Taken together, highly structured local populations, limited gene flow and the small Ne of grayling populations indicates that grayling populations are vulnerable to overexploitation and, hence, monitoring and careful management using the precautionary principles is required not only in Finland but throughout Europe. Population genetic analyses of lake-run brown trout populations in the Inari basin (northernmost Finland) revealed hierarchical population structure where individual populations were clustered into three population groups largely corresponding to different geographic regions of the basin. Similar to my earlier work with European grayling, the genetic differentiation among and within population groups of lake-run brown trout was relatively high. Such strong differentiation indicated that the power to determine the relative contribution of populations in mixed fisheries should be relatively high. Consistent with these expectations, high accuracy and precision in mixed stock analysis (MSA) simulations were observed. Application of MSA to indigenous fish caught in the Inari basin identified altogether twelve populations that contributed significantly to mixed stock fisheries with the Ivalojoki river system being the major contributor (70%) to the total catch. When the contribution of wild trout populations to the fisheries was evaluated regionally, geographically nearby populations were the main contributors to the local catches. MSA also revealed a clear separation between the lower and upper reaches of Ivalojoki river system – in contrast to lower reaches of the Ivalojoki river that contributed considerably to the catch, populations from the upper reaches of the Ivalojoki river system (>140 km from the river mouth) did not contribute significantly to the fishery. This could be related to the available habitat size but also associated with a resident type life history and increased cost of migration. The studies in my thesis highlight the importance of dense sampling and wide population coverage at the scale being studied and also demonstrate the importance of critical evaluation of the underlying assumptions of the population genetic models and methods used. These results have important implications for conservation and sustainable fisheries management of Finnish populations of European grayling and brown trout in the Inari basin.
Resumo:
The increase in incidence of charcoal rot caused by Macrophomina phaseolina on soybeans (Glycine max) was followed four seasons in conventional and no-till cropping systems. In the 1997/98 and 2000/01 seasons, total precipitation between sowing and harvest reached 876.3 and 846.9 mm, respectively. For these seasons, disease incidence did not differ significantly between the no-till and conventional systems. In 1998/99 and 1999/00 precipitation totaled 689.9 and 478.3 mm, respectively. In 1998/99, in the no-till system, the disease incidence was 43.7% and 53.1% in the conventional system. In 1999/00 the final incidence was 68.7% and 81.2% for the no-till and conventional systems, respectively. For these two seasons, precipitation was lower than that required for soybean crops (840 mm), and the averages of disease incidence were significantly higher in the conventional system. The concentration of microsclerotia in soil samples was higher in samples collected in conventional system at 0 - 10 cm depth. However, analysis of microsclerotia in roots showed that in years with adequate rain no difference was detected. In dry years, however, roots from plants developed under the conventional system had significantly more microsclerotia. Because of the wide host range of M. phaseolina and the long survival times of the microsclerotia, crop rotation would probably have little benefit in reducing charcoal rot. Under these study conditions it may be a better alternative to suppress charcoal rot by using the no-till cropping system to conserve soil moisture and reduce disease progress.
Resumo:
Brazil was the first country in Latin America to establish and regulate this type of reserve, and there are currently more than 700 Private Nature Heritage Reserves (RPPN in Portuguese) officially recognized by either federal or state environmental agencies. Together, these RPPN protect more than a half million hectares of land in the country. The coastal forests in the southern part of Bahia State extend 100 to 200 km inland, gradually changing in physiognomy as they occupy the dryer inland areas. The coastal forest has been subjected to intense deforestation, and currently occupies less than 10% of its original area. For this work the creation processes of the RPPN were consulted to obtain the data creation time, size of property, the condition of the remaining forest, succession chain and the last paid tax. After that, interviews with the owners were made to confirm this data. Sixteen RPPN have been established in this region until 2005. Their sizes vary from 4.7 to 800 ha. Ten of these RPPN are located within state or federal conservation areas or their buffer zones. In spite of the numerous national and international conservation strategies and environmental policies focused on the region, the present situation of the cocoa zone is threatening the conservation of the region's natural resources. The establishment of private reserves in the cocoa region could conceivably improve these conservation efforts. This type of reserve can be established under a uniform system supported by federal legislation, and could count on private organizations.
Resumo:
The "Serra do Mar" region comprises the largest remnant of the Brazilian Atlantic Forest. The coast of the Paraná State is part of the core area of the "Serra do Mar" corridor and where actions for biodiversity conservation must be planned. In this study we aimed at characterizing the landscape structure in the APA-Guaraqueçaba, the largest protected area in this region, in order to assist environmental policies of this region. Based on a supervised classification of a mosaic of LANDSAT-5-TM satellite images (from March 2009), we developed a map (1:75,000 scale) with seven classes of land use and land cover and analyzed the relative quantities of forests and modified areas in slopes and lowlands. The APA-Guaraqueçaba is comprised mainly by the Dense Ombrophilous Forest (68.6% of total area) and secondary forests (9.1%), indicating a forested landscape matrix; anthropogenic and bare soil areas (0.8%) and the Pasture/Grasslands class (4.2%) were less representative. Slopes were less fragmented and more preserved (96.3% of Dense Ombrophilous Forest and secondary forest) than lowlands (71.3%), suggesting that restoration initiatives in the lowlands must be stimulated in this region. We concluded that most of the region sustains well-conserved ecosystems, highlighting the importance of Paraná northern coast for the biodiversity maintenance of the Atlantic Forest.
Resumo:
This work objectified to evaluate the efficiency of two meter mechanism of corn seeds when submitted to different forward speed and soil management system during the non-tillage seeding. It was used a factorial design in randomized blocks. The factors whose effects were examined were related to the seeders with pneumatic and horizontal disk meter mechanisms for the distribution of the seeds, to the set tractor-seeder forward speeds (4.4; 8.0 and 9.8 km h-1), and to the soil management system considering the corn no-tillage seeding over minimum tillage with chisel plow and the no-tillage system for the seeding of oat culture (Avena strigosa Schreb). It was verified that the forward speed didn't influence the initial and final stands of plants but it interfered in the regularity of longitudinal distribution of plants. The smallest speed provided the largest percentile of normal spacing between plants. The pneumatic meter mechanism presented better performance than the horizontal disk perforated in the longitudinal distribution of plants. About corn productivity aspect it's indifferent the recommendation of use for pneumatic and perforated horizontal disk meter mechanism of seeds.
Resumo:
The purpose of this work was evaluating the energetic demand of a seeder-fertilizer machine as a function of the type and handling of vegetal covering culture and of the fertilizer deposition shank depth. A Valtra BM100 tractor was used implemented to pull a high precision seeder-fertilizer machine with four ranks of seeding, spaced 0.9 m for maize culture. Experiment was conducted with design in randomized blocks in factorial plots, in the Laboratory of Machines and Agricultural Mechanization experimental area (LAMMA) of UNESP-Jaboticabal, using two covering cultures (black-mucuna and crotalaria), three handlings of this covering, two mechanical (straw crusher and roller knife) and one chemical (pulverization of herbicide), performed 120 days after seeding of covering cultures and three depths of fertilizer deposition shank, completing 18 treatments, with four repetitions, totaling 72 observations. Parameters of displacement speed, gliding, force on traction bar, peak force, power on pulling bar and fuel consumption were evaluated. It was possible to conclude that force on traction bar was less for depths of 0.11 and 0.14 m of fertilizer plough shank, the same occurring for peak force, power on traction bar and volumetric consumption. The specific consumption was lower at a depth of 0.17 m of fertilizer plough shank. Covering cultures and their handlings did not interfere in the performance of machines under inquiry.
Resumo:
To study Assessing the impact of tillage practices on soil carbon losses dependents it is necessary to describe the temporal variability of soil CO2 emission after tillage. It has been argued that large amounts of CO2 emitted after tillage may serve as an indicator for longer-term changes in soil carbon stocks. Here we present a two-step function model based on soil temperature and soil moisture including an exponential decay in time component that is efficient in fitting intermediate-term emission after disk plow followed by a leveling harrow (conventional), and chisel plow coupled with a roller for clod breaking (reduced) tillage. Emission after reduced tillage was described using a non-linear estimator with determination coefficient (R²) as high as 0.98. Results indicate that when emission after tillage is addressed it is important to consider an exponential decay in time in order to predict the impact of tillage in short-term emissions.
Resumo:
Under organic management in Seropédica-RJ, Brazil, using a weighing lysimeter, the crop coefficients (kc), the maximum evapotranspiration and the productivity of eggplant cultivation under two cropping systems (no tillage with straw plus soil with conventional preparation) were determined. A whole randomized layout with two treatments (no tillage and conventional) and five replicates during 134 days of cultivation were adopted. There were no significant differences in the eggplant cultivation in the two cropping systems, with a maximum commercial productivity obtained from 47.42 Mg ha-1 for the no-tillage system, and 47.91 Mg ha-1 for the conventional tillage. The accumulated ETc was 285.15 and 323.44 mm for the no-tillage and conventional, respectively. The crop coefficients value for the phases: 1 - transplanting, flowering, 2 - flowering-fruiting, 3 - fruit- first harvesting, 4- first harvesting of the final crop cycle was 0.83, 0.77, 0.90 and 0.97 in no-tillage system for the respective phases and for the conventional one 0.81, 1.14, 1.17 and 1.05 for the same steps described above.
Resumo:
Taking into account that the sampling intensity of soil attributes is a determining factor for applying of concepts of precision agriculture, this study aims to determine the spatial distribution pattern of soil attributes and corn yield at four soil sampling intensities and verify how sampling intensity affects cause-effect relationship between soil attributes and corn yield. A 100-referenced point sample grid was imposed on the experimental site. Thus, each sampling cell encompassed an area of 45 m² and was composed of five 10-m long crop rows, where referenced points were considered the center of the cell. Samples were taken from at 0 to 0.1 m and 0.1 to 0.2 m depths. Soil chemical attributes and clay content were evaluated. Sampling intensities were established by initial 100-point sampling, resulting data sets of 100; 75; 50 and 25 points. The data were submitted to descriptive statistical and geostatistics analyses. The best sampling intensity to know the spatial distribution pattern was dependent on the soil attribute being studied. The attributes P and K+ content showed higher spatial variability; while the clay content, Ca2+, Mg2+ and base saturation values (V) showed lesser spatial variability. The spatial distribution pattern of clay content and V at the 100-point sampling were the ones which best explained the spatial distribution pattern of corn yield.
Resumo:
Artikkeli perustuu kirjallisuuskatsaukseen, joka on tehty 17 lehden 112 vertaisarvioidusta artikkelista vuosilta 2003-2007.
Resumo:
The forage production in crop-livestock integration is critical both for formation of straw for no tillage planting and food for livestock farm. The experiment was conducted in the autumn/winter of 2009 and 2010, in the city of Selvíria -state of Mato Grosso do Sul -MS, Brazil, at Experimental Station of FEIS/UNESP. The objective was to evaluate the optimal depth for deposition of seeds of two Brachiaria species intercropped with corn with emphasis on grain yield and straw. The experimental design was a randomized block design in a factorial scheme 3 x 3, with four replications. The main treatments were two species of Brachiaria (Urochloa brizantha "Marandú" and Urochloa ruziziensis), which seeds were mixed with corn fertilizer and a control treatment (without intercropping). Secondary treatments consisted of three depths (8; 10 and 16 cm) in the deposition of fertilizer (in the consortium and the control treatments). The intercropping corn with Brachiaria produced similar amounts of straw. The straw total production was higher when intercropped and decreased with depth. The consortium with U. ruziziensis provided higher grain yield of corn in relation to U. brizantha, in 2010. The sowing depth of forages did not affect corn yield.