999 resultados para Concrete shells


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of tests on filigree slab joints was performed with the aim of assessing whether such joints can be reliably used in the construction of two-way spanning reinforced concrete slabs. The test results were compared with code requirements. Adequate joint performance is shown to be achievable when the joints are appropriately detailed. Further research is recommended for the formulation of a more generic understanding when the design parameters are varied from those studied in this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The classification of a concrete mixture as self-compacting (SCC) is performed by a series of empirical characterization tests that have been designed to assess not only the flowability of the mixture but also its segregation resistance and filling ability. The objective of the present work is to correlate the rheological parameters of SCC matrix, yield stress and plastic viscosity, to slump flow measurements. The focus of the slump flow test investigation was centered on the fully yielded flow regime and an empirical model relating the yield stress to material and flow parameters is proposed. Our experimental data revealed that the time for a spread of 500 mm which is used in engineering practice as reference for measurement parameters, is an arbitrary choice. Our findings indicate that the non-dimensional final spread is linearly related to the non-dimensional yield-stress. Finally, there are strong indications that the non-dimensional viscosity of the mixture is associated with the non-dimensional final spread as well as the stopping time of the slump flow; this experimental data set suggests an exponential decay of the final spread and stopping time with viscosity. © Appl. Rheol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uniquely, China employs MgO already contained in cement clinker or as an expansive additive to compensate for the thermal shrinkage of mass concrete, particularly dam concrete, with almost 40 years' experience in both research activities and industrial applications. Compensating shrinkage with expansion produced by MgO has been proved to effectively prevent thermal cracking of mass concrete, and reduce the cost of temperature control measures and speed up the construction process. Moreover, the expansion properties of MgO could be designed flexibly, through adjusting its microstructure by changing the calcination conditions (calcining temperature and residence time). The collective knowledge and experience of MgO expansive cement and concrete is worthy of sharing with relevant engineers and researchers globally but dissemination has been hindered as most of the relevant literature is published in Chinese. This paper reviews the history, state-of-the-art progress and future research needs in the field of MgO expansive cement and concrete. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Balloons are one example of pressurised, elastic, spherical shells. Whilst analytical solutions exist for the vibration of pressurised spheres, these models only incorporate constant tension in the membrane. For elastic shells, changes in curvature will result in restoring forces that are proportional to the elasticity in the membrane; hence the assumption of constant tension is not valid. This paper describes an analytical solution for the natural frequencies of an elastic spherical shell subject to internal pressure. When the membrane tension is set to zero, the results are shown to converge to the analytical solution for a spherical shell, and when the skin elasticity is neglected, the results converge to the constant-tension solution. This analytical solution is used to predict the natural frequencies of a small balloon, based on a value for the elastic modulus that is determined using biaxial tensile testing. These predictions are compared to experimental measurements of balloon vibrations using impact hammer testing, and good agreement is seen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large concrete structures need to be inspected in order to assess their current physical and functional state, to predict future conditions, to support investment planning and decision making, and to allocate limited maintenance and rehabilitation resources. Current procedures in condition and safety assessment of large concrete structures are performed manually leading to subjective and unreliable results, costly and time-consuming data collection, and safety issues. To address these limitations, automated machine vision-based inspection procedures have increasingly been proposed by the research community. This paper presents current achievements and open challenges in vision-based inspection of large concrete structures. First, the general concept of Building Information Modeling is introduced. Then, vision-based 3D reconstruction and as-built spatial modeling of concrete civil infrastructure are presented. Following that, the focus is set on structural member recognition as well as on concrete damage detection and assessment exemplified for concrete columns. Although some challenges are still under investigation, it can be concluded that vision-based inspection methods have significantly improved over the last 10 years, and now, as-built spatial modeling as well as damage detection and assessment of large concrete structures have the potential to be fully automated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strings of interconnected hollow carbon nanoparticles with porous shells were prepared by simple heat-treatments of a mixture of resorcinol-formaldehyde gel and transition-metal salts. The sample was characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and nitrogen adsorption. Results show that the sample consisted of relatively uniform hollow particles with sizes ranging from 70 to 80 nm forming a strings-of-pearls-like nanostructure. The material with porous shells possessed well-developed graphitic structure with an interlayer (d(002)) spacing of 0.3369 nm and the stack height of the graphite crystallites of 9 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conceitos: sistemas especialistas, Expert Sysyem Shell, Diagnose remota, AppLets, ServLets. Ambiente de diagnose remota e motivação de mudança. Ferramentas estudadas: WebLS. JESS, CLIPS, WebCLIPS, quadros comparativos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2009

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite being exposed to the harsh sea-spray environment of the North Sea at Arbroath, Scotland, for over 63 years, many of the reinforced concrete precast beam elements of the 1.5 km long promenade railing are still in very good condition and show little evidence of reinforcement corrosion. In contrast, railing replacements constructed in about 1968 and in 1993 are almost all badly cracked as a result of extensive corrosion of the longitudinal reinforcement. This is despite the newer concrete appearing to be of better quality than the 1943 concrete. Statistics for maximum crack width for each of the three populations, based on measurements made in 2004 and in 2006, are presented. In situ and laboratory measurements show that the 1943 concrete appears to have high permeability but it also shows high electrical resistivity. Chloride penetration measurements show the 1943 and 1993 concretes to have similar chloride profiles and similar chloride concentrations at the reinforcement bars. This is inconsistent with the 1943 beams showing much less reinforcement corrosion than their later replacements and casts doubt on the conventional practice for durability design focusing on reducing concrete permeability through denser concretes or greater cover.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The corrosion of steel reinforcement bars in reinforced concrete structures exposed to severe marine environments usually is attributed to the aggressive nature of chloride ions. In some cases in practice corrosion has been observed to commence already within a few years of exposure even with considerable concrete cover to the reinforcement and apparently high quality concretes. However, there are a number of other cases in practice for which corrosion initiation took much longer, even in cases with quite modest concrete cover and modest concrete quality. Many of these structures show satisfactory long-term structural performance, despite having high levels of localized chloride concentrations at the reinforcement. This disparity was noted already more than 50 years ago, but appears still not fully explained. This paper presents a systematic overview of cases reported in the engineering and corrosion literature and considers possible reasons for these differences. Consistent with observations by others, the data show that concretes made from blast furnace cements have better corrosion durability properties. The data also strongly suggest that concretes made with limestone or non-reactive dolomite aggregates or sufficiently high levels of other forms of calcium carbonates have favourable reinforcement corrosion properties. Both corrosion initiation and the onset of significant damage are delayed. Some possible reasons for this are explored briefly.