993 resultados para Composite resins - Dental leakage


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To determine the influence of different dentin treatments on the microtensile bond strengths of adhesive resins to dentin. Methods: Fifteen human molars were ground to 600-grit to obtain flat root-dentin surfaces. Five different dentin treatments were evaluated: Group 1 - 10% phosphoric acid for 30 seconds; Group 2 - 37% phosphoric acid for 15 seconds; Group 3 - air-abrasion for 10 seconds followed by 10% phosphoric acid for 30 seconds; Group 4 - air-abasion for 10 seconds followed by 37% phosphoric acid for 15 seconds. The dental adhesive (OptiBond Solo Plus) was applied according to manufacturer's instructions and followed by composite (Z100) application to provide sufficient bulk for microtensile bond testing. All samples were placed in distilled water for 24 hours at 37degreesC, thermocycled for 500 cycles in distilled water at 10degreesC and 50degreesC, and serially sliced perpendicular to the adhesive surface and subjected to tensile forces (0.5 mm/minute). Additional samples were prepared for SEM to observe the adhesive interface. Results: Group 2 exhibited significantly (P< 0.05) lower bond strength values than all other treatments. The bond strengths of the different conditions were (in MPa): Group 1: 43.0 +/- 16.1; Group 2: 29.2 +/- 8.3; Group 3: 48.1 +/- 14.2; Group 4: 41.0 +/- 9.3. The dentin treated with phosphoric acid 37% for 15 seconds showed the lowest values of microtensile bond strength. The results obtained with Groups 1, 3 and 4 were statistically similar.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives. This study compared the residual monomer (RM) in four hard chair-side reline resins (Duraliner II-D, Kooliner-K, Tokuso Rebase Fast-TRF and Ufi Gel hard-UGH) and one heat-polymerized denture base resin (Lucitone 550-L), which was processed using two polymerization cycles (short-LS and long-LL). It was also investigated the effect of two after polymerization treatments on this RM content.Methods. Specimens (n = 18) of each material were produced following the manufacturers' instructions and then divided into three groups. Group I specimens were left untreated (GI-control). Specimens of group II (GII) were given post-polymerization treatment by microwave irradiation. In group III (GIII), specimens were submitted to immersion in water at 55 degrees C (reline resins-10 min; denture base resin L-60min). The RM was analyzed using high performance liquid chromatography (HPLC) and expressed as a percentage of RM. Data were analyzed by two-way ANOVA followed by Tukey's test (alpha = 0.05).Results. Comparing control specimens, statistical differences were found among all materials (p < 0.05), and the results can be arranged as K (1.52%) > D (0.85%) > UGH (0.45%) > LL (0.24%) > TRF (0.14%) > LS (0.08%). Immersion in hot water (GIII) promoted a significant (p < 0.05) reduction in the RM for all materials evaluated compared to control (GI), with the exception of LL specimens. Materials K, UGH and TRF exhibited significantly (p < 0.05) lower values of RM after microwave irradiation (GII) than in the control specimens.Significance. The reduction in RM promoted by water-bath and microwave post-polymerization treatments could improve the mechanical properties and biocompatibility of the relining and denture base materials. (c) 2006 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.