1000 resultados para Complex fractionated atrial electrograms
Resumo:
The ultrastructure of the membrane attack complex (MAC) of complement had been described as representing a hollow cylinder of defined dimensions that is composed of the proteins C5b, C6, C7, C8, and C9. After the characteristic cylindrical structure was identified as polymerized C9 [poly(C9)], the question arose as to the ultrastructural identity and topology of the C9-polymerizing complex C5b-8. An electron microscopic analysis of isolated MAC revealed an asymmetry of individual complexes with respect to their length. Whereas the length of one boundary (+/- SEM) was always 16 +/- 1 nm, the length of the other varied between 16 and 32 nm. In contrast, poly(C9), formed spontaneously from isolated C9, had a uniform tubule length (+/- SEM) of 16 +/- 1 nm. On examination of MAC-phospholipid vesicle complexes, an elongated structure was detected that was closely associated with the poly(C9) tubule and that extended 16-18 nm beyond the torus of the tubule and 28-30 nm above the membrane surface. The width of this structure varied depending on its two-dimensional projection in the electron microscope. By using biotinyl C5b-6 in the formation of the MAC and avidin-coated colloidal gold particles for the ultrastructural analysis, this heretofore unrecognized subunit of the MAC could be identified as the tetramolecular C5b-8 complex. Identification also was achieved by using anti-C5 Fab-coated colloidal gold particles. A similar elongated structure of 25 nm length (above the surface of the membrane) was observed on single C5b-8-vesicle complexes. It is concluded that the C5b-8 complex, which catalyzes poly(C9) formation, constitutes a structure of discrete morphology that remains as such identifiable in the fully assembled MAC, in which it is closely associated with the poly(C9) tubule.
Developing Services for Children and Young People with Complex Physical Healthcare Needs (PDF 353KB)
Resumo:
The females of the two species of the Lutzomyia intermedia complex can be easily distinguished, but the males of each species are quite similar. The ratios between the extra-genital and the genital structures of L. neivai are larger than those of L. intermedia s. s., according to ANOVA. An artificial neural network was trained with a set of 300 examples, randomly taken from a sample of 358 individuals. The input vectors consisted of several ratios between some structures of each insect. The model was tested on the remaining 58 insects, 56 of which (96.6%) were correctly identified. This ratio of success can be considered remarkable if one takes into account the difficulty of attaining comparable results using traditional statistical techniques.
Resumo:
Appendices to Complex Needs Report
Resumo:
Departmental review of nursing services in order to ensure that they are facilitated to fully support and respond to children with complex needs and their families, and for them to work in partnership with other professions and agencies.
Resumo:
An epidemiological study was carried out in the northern Mexican state, Nayarit. Fourteen patients with possible cutaneous leishmaniasis skin lesions gave positive Montenegro skin tests. Biopsies were taken from the skin ulcer and analyzed by polymerase chain reaction (PCR) with specific primers for the Leishmania mexicana complex; however all biopsies were not amplified. PCR carried out with specific primers for the L. braziliensis complex resulted in the amplification of all patient DNA. DNA from 12 out of 14 biopsies gave positive amplification with primers species specific for L. (Viannia) braziliensis and hybridized with a species specific L. (V.) braziliensis probe. These results demonstrate the presence in Nayarit of at least two members of the L. braziliensis complex. Most of the cutaneous lesions were caused by L. (V.) braziliensis and two by another species belonging to the L. braziliensis complex. As far as we are aware, this is the first report of L. (V.) braziliensis in Nayarit. The main risk factor associated with the contraction of this disease in Nayarit is attributed to working on coffee plantations.
Resumo:
Recognition by the T-cell receptor (TCR) of immunogenic peptides (p) presented by Class I major histocompatibility complexes (MHC) is the key event in the immune response against virus-infected cells or tumor cells. A study of the 2C TCR/SIYR/H-2K(b) system using a computational alanine scanning and a much faster binding free energy decomposition based on the Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) method is presented. The results show that the TCR-p-MHC binding free energy decomposition using this approach and including entropic terms provides a detailed and reliable description of the interactions between the molecules at an atomistic level. Comparison of the decomposition results with experimentally determined activity differences for alanine mutants yields a correlation of 0.67 when the entropy is neglected and 0.72 when the entropy is taken into account. Similarly, comparison of experimental activities with variations in binding free energies determined by computational alanine scanning yields correlations of 0.72 and 0.74 when the entropy is neglected or taken into account, respectively. Some key interactions for the TCR-p-MHC binding are analyzed and some possible side chains replacements are proposed in the context of TCR protein engineering. In addition, a comparison of the two theoretical approaches for estimating the role of each side chain in the complexation is given, and a new ad hoc approach to decompose the vibrational entropy term into atomic contributions, the linear decomposition of the vibrational entropy (LDVE), is introduced. The latter allows the rapid calculation of the entropic contribution of interesting side chains to the binding. This new method is based on the idea that the most important contributions to the vibrational entropy of a molecule originate from residues that contribute most to the vibrational amplitude of the normal modes. The LDVE approach is shown to provide results very similar to those of the exact but highly computationally demanding method.
Resumo:
The kinetics of atrial natriuretic peptides (ANP) and the kinetic profile of their effect on blood pressure and renal hemodynamic and electrolyte excretion were investigated in 20 salt-loaded healthy volunteers during and after constant rate infusion. At steady state, mean plasma concentrations of ANP were measured at 210, 430, and 2990 pg/ml and mean systemic clearance was 2.6, 2.5, and 1.7 L/min for ANP infusion rates of 0.5, 1, and 5 micrograms/min, respectively, which corresponds to the clearance rate of other vasoactive peptide hormones. The apparent volume of distribution averaged 17 L and the mean half-life was 4.5 minutes. ANP induced dose-related effects on systemic and renal hemodynamic, as well as urinary electrolyte excretion, albeit with a time lag between onset and full effect.