928 resultados para Combustion of olive oil
Resumo:
The study was done to identify the most active fungitoxic component of cinnamon bark (Cinnamomum zeylanicum) oil that can be used as a marker for standardization of cinnamon extract or oil based natural preservative of stored seeds. Aspergillus flavus and A. ruber were used as test fungi. The hexane extracted crude oil and the hydro-distilled essential oil from cinnamon bark had complete growth inhibition concentration (CGIC) of 300 and 100 µl/l, respectively. Both oils produced three fractions on preparative thin layer silica-gel chromatography plates. The fraction-2 of either oil was the largest and most active, with CGIC of 200 µl/l, but the fungitoxicity was also retained in the other two fractions. The fraction-1 and 3 of the crude oil reduced growth of both the fungal species by 65%, and those of distilled oil by 45% at 200 µl/l. The CGIC of these fractions from both the sources was above 500 µl/l. The gas chromatography and mass spectrometry (GC-MS) of the fraction-2 of the hexane extract revealed that it contained 61% cinnamaldehyde, 29% cinnamic acid, and two minor unidentified compounds in the proportion of 4% and 6%. The GC-MS of the fraction-2 of the distilled oil revealed that it contained 99.1% cinnamaldehyde and 0.9% of an unidentified compound. The CGIC of synthetic cinnamaldehyde was 300 µl/l and that of cinnamic acid above 500 µl/l. The 1:1 mixture of cinnamaldehyde and cinnamic acid had CGIC of 500 µl/l. The data revealed that cinnamaldehyde was the major fungitoxic component of hexane extract and the distilled essential oil of cinnamon bark, while other components have additive or synergistic effects on total fungitoxicity. It is suggested that the natural seed preservative based on cinnamon oil can be standardized against cinnamaldehyde.
Resumo:
Tillgången på traditionella biobränslen är begränsad och därför behöver man ta fram nya, tidigare outnyttjade biobränslen för att möta de uppställda CO2 emissionsmålen av EU och det ständigt ökande energibehovet. Under de senare åren har intresset riktats mot termisk energiutvinning ur olika restfraktioner och avfall. Vid produktion av fordonsbränsle ur biomassa är den fasta restprodukten ofta den största procesströmmen i produktionsanläggningen. En riktig hantering av restprodukterna skulle göra produktionen mera lönsam och mer ekologiskt hållbar. Ett alternativ är att genom förbränning producera elektricitet och/eller värme eftersom dessa restprodukter anses som CO2-neutrala. Målsättningen med den här avhandlingen var att studera förbränningsegenskaperna hos några fasta restprodukter som uppstår vid framställning av förnybara fordonsbränslen. De fyra undersökta materialen är rapskaka, palmkärnskaka, torkad drank och stabiliserat rötslam. I studien används ett stort urval av undersökningsmetoder, från laboratorieskala till fullskalig förbränning, för att identifiera de huvudsakliga utmaningarna förknippade med förbränning av restprodukterna i pannor med fluidiserad bäddteknik. Med hjälp av detaljerad bränslekarakterisering kunde restprodukterna konstateras vara en värdefull källa för värme- och elproduktion. Den kemiska sammansättningen av restprodukterna varierar stort jämfört med mera traditionellt använda biobränslen. En gemensam faktor för alla de studerade restprodukterna är en hög fosforhalt. På grund av de låga fosforkoncentrationerna i de traditionella biobränslena har grundämnet hittills inte ansetts spela någon större roll i askkemin. Experimenten visade nu att fosfor inte mera kan försummas då man studerar kemin i förbränningsprocesser, då allt flera fosforrika bränslen tränger in på energimarknaden.
Resumo:
The energy balance for the production of sunflower oil and cake was carried out during the agricultural and industrial stage phase, where it was considered a cold extraction by hydraulic pressing, with the plant location in a rural area with a radius of 30km range. Data on productivity was used in two varieties of sunflower (Helio 358 and Aguará 04) grown in different seasons (2007/2008, 2008/2009), under different irrigation levels. Data showed that irrigation resulted in an increase in productivity of both varieties, and the best response was observed for Aguará 04 variety. Moreover, the increased intensity of irrigation negatively affected the energy balance, reducing the ratio between energy produced and energy used in the production chain. The most significant inputs in the energy intake were fertilizer followed by diesel oil, when irrigation was not used for. When the irrigation technique was used, the most significant inputs, in order of representativeness, were: energy, fertilizer and equipment.
Resumo:
The environmental aspect of corporate social responsibility (CSR) expressed through the process of the EMS implementation in the oil and gas companies is identified as the main subject of this research. In the theoretical part, the basic attention is paid to justification of a link between CSR and environmental management. The achievement of sustainable competitive advantage as a result of environmental capital growth and inclusion of the socially responsible activities in the corporate strategy is another issue that is of special significance here. Besides, two basic forms of environmental management systems (environmental decision support systems and environmental information management systems) are explored and their role in effective stakeholder interaction is tackled. The most crucial benefits of EMS are also analyzed to underline its importance as a source of sustainable development. Further research is based on the survey of 51 sampled oil and gas companies (both publicly owned and state owned ones) originated from different countries all over the world and providing reports on sustainability issues in the open access. To analyze their approach to sustainable development, a specifically designed evaluation matrix with 37 indicators developed in accordance with the General Reporting Initiative (GRI) guidelines for non-financial reporting was prepared. Additionally, the quality of environmental information disclosure was measured on the basis of a quality – quantity matrix. According to results of research, oil and gas companies prefer implementing reactive measures to the costly and knowledge-intensive proactive techniques for elimination of the negative environmental impacts. Besides, it was identified that the environmental performance disclosure is mostly rather limited, so that the quality of non-financial reporting can be judged as quite insufficient. In spite of the fact that most of the oil and gas companies in the sample claim the EMS to be embedded currently in their structure, they often do not provide any details for the process of their implementation. As a potential for the further development of EMS, author mentions possible integration of their different forms in a single entity, extension of existing structure on the basis of consolidation of the structural and strategic precautions as well as development of a unified certification standard instead of several ones that exist today in order to enhance control on the EMS implementation.
Resumo:
This study is part of the Minimizing risks of maritime oil transport by holistic safety strategies (MIMIC) project. The purpose of this study is to provide a current state analysis of oil transportation volumes in the Baltic Sea and to create scenarios for oil transportation in the Gulf of Finland for the years 2020 and 2030. Future scenarios and information about oil transportation will be utilized in the modelling of oil transportation risks, which will be carried out as part of the MIMIC project. Approximately 290 million tons of oil and oil products were transported in the Baltic Sea in 2009, of which 55% (160 million tons) via the Gulf of Finland. Oil transportation volumes in the Gulf of Finland have increased from 40 million to almost 160 million tonnes over the last ten years. In Russia and Estonia, oil transportation mainly consists of export transports of the Russian oil industry. In Finnish ports in the Gulf of Finland, the majority of oil traffic is concentrated to the port of Sköldvik, while the remainder mainly consists of different oil products for domestic use. Transit transports to/from Russia make up small volumes of oil transportation. The largest oil ports in the Gulf of Finland are Primorsk, Tallinn, St. Petersburg and Sköldvik. The basis for the scenarios for the years 2020 and 2030 is formed by national energy strategies, the EU`s climate and energy strategies as well other energy and transportation forecasts for the years 2020 and 2030. Three alternative scenarios were produced for both 2020 and 2030. The oil volumes are based on the expert estimates of nine specialists. The specialists gave three volumes for each scenario: the expected oil transport volumes, and the minimum and maximum volumes. Variations in the volumes between the scenarios are not large, but each scenario tends to have rather a large difference between the figures for minimum and maximum volumes. This variation between the minimum and maximum volumes ranges around 30 to 40 million tonnes depending on the scenario. On the basis of this study, no a dramatic increase in oil transportation volumes in the Gulf of Finland is to be expected. Most of the scenarios only forecasted a moderate growth in maritime oil transportation compared to the current levels. The effects of the European energy policy favouring renewable energy sources can be seen in the 2030 scenarios, in which the transported oil volumes are smaller than in the 2020 scenarios. In the Slow development 2020 scenario, oil transport volumes for 2020 are expected to be 170.6 Mt (million tonnes), in the Average development 2020 187.1 Mt and in the Strong development 2020 201.5 Mt. The corresponding oil volumes for the 2030 scenarios were 165 Mt for the Stagnating development 2030 scenario, 177.5 Mt for the Towards a greener society 2030 scenario and 169.5 Mt in the Decarbonising society 2030 scenario.
Resumo:
OBJECTIVE: To evaluate the effect of preoperative supplementation of omega-3 fatty acids on the healing of colonic anastomoses in malnourished rats receiving paclitaxel. METHODS: we studied 160 male Wistar rats, divided in two groups: one subjected to malnutrition by pair feeding (M) for four weeks, and another that received food ad libitum (W). In the fourth week, the groups were further divided into two subgroups that received omega-3 or olive oil by gavage. The animals were submitted to colonic transection and end-to-end anastomosis. After the operation, each of the four groups was divided into two subgroups that received intraperitoneal isovolumetric solutions of saline or paclitaxel. RESULTS: mortality was 26.8% higher in the group of animals that received paclitaxel (p = 0.003). The complete rupture strength was greater in well-nourished-oil Paclitaxel group (WOP) compared with the the malnourished-oil Paclitaxel one (MOP). The collagen maturation index was higher in well-nourished-oil saline group (WOS) in relation to the malnutrition-oil-saline group (MOS), lower in malnourished-oil-saline group (MOS) in relation to malnourished-ômega3-saline one (M3S) and lower in the well-nourished-omega3-saline group (W3S) compared with the malnourished-omega3-saline (M3S). The blood vessel count was higher in the malnourished-oil-saline group (MOS) than in the malnourished-oil-paclitaxel group (MOP) and lower in the malnourished-oil-saline group (MOS) in relation to the malnourished-omega3-paclitaxel group (M3P). CONCLUSION: supplementation with omega-3 fatty acids was associated with a significant increase in the production of mature collagen in malnourished animals, with a reversal of the harmful effects caused by malnutrition associated with the use of paclitaxel on the rupture strength, and with a stimulus to neoangiogenesis in the group receiving paclitaxel.
Resumo:
The Kraft pulping process is the dominant chemical pulping process in the world. Roughly 195 million metric tons of black liquor are produced annually as a by-product from the Kraft pulping process. Black liquor consists of spent cooking chemicals and dissolved organics from the wood and can contain up to 0.15 wt% nitrogen on dry solids basis. The cooking chemicals from black liquor are recovered in a chemical recovery cycle. Water is evaporated in the first stage of the chemical recovery cycle, so the black liquor has a dry solids content of 65-85% prior to combustion. During combustion of black liquor, a portion of the black liquor nitrogen is volatilized, finally forming N2 or NO. The rest of the nitrogen remains in the char as char nitrogen. During char conversion, fixed carbon is burned off leaving the pulping chemicals as smelt, and the char nitrogen forms mostly smelt nitrogen (cyanate, OCN-). Smelt exits the recovery boiler and is dissolved in water. The cyanate from smelt decomposes in the presence of water, forming NH3, which causes nitrogen emissions from the rest of the chemical recovery cycle. This thesis had two focuses: firstly, to determine how the nitrogen chemistry in the recovery boiler is affected by modification of black liquor; and secondly, to find out what causes cyanate formation during thermal conversion, and which parameters affect cyanate formation and decomposition during thermal conversion of black liquor. The fate of added biosludge nitrogen in chemical recovery was determined in Paper I. The added biosludge increased the nitrogen content of black liquor. At the pulp mill, the added biosludge did not increase the NO formation in the recovery boiler, but instead increased the amount of cyanate in green liquor. The increased cyanate caused more NH3 formation, which increased the NCG boiler’s NO emissions. Laboratory-scale experiments showed an increase in both NO and cyanate formation after biosludge addition. Black liquor can be modified, for example by addition of a solid biomass to increase the energy density of black liquor, or by separation of lignin from black liquor by precipitation. The precipitated lignin can be utilized in the production of green chemicals or as a fuel. In Papers II and III, laboratory-scale experiments were conducted to determine the impact of black liquor modification on NO and cyanate formation. Removal of lignin from black liquor reduced the nitrogen content of the black liquor. In most cases NO and cyanate formation decreased with increasing lignin removal; the exception was NO formation from lignin lean soda liquors. The addition of biomass to black liquor resulted in a higher nitrogen content fuel mixture, due to the higher nitrogen content of biomass compared to black liquor. More NO and cyanate were formed from the fuel mixtures than from pure black liquor. The increased amount of formed cyanate led to the hypothesis that black liquor is catalytically active and converts a portion of the nitrogen in the mixed fuel to cyanate. The mechanism behind cyanate formation during thermal conversion of black liquor was not clear before this thesis. Paper IV studies the cyanate formation of alkali metal loaded fuels during gasification in a CO2 atmosphere. The salts K2CO3, Na2CO3, and K2SO4 all promoted char nitrogen to cyanate conversion during gasification, while KCl and CaCO3 did not. It is now assumed that cyanate is formed when alkali metal carbonate or an active intermediate of alkali metal carbonate (e.g. -CO2K) reacts with the char nitrogen forming cyanate. By testing different fuels (bark, peat, and coal), each of which had a different form of organic nitrogen, it was concluded that the form of organic nitrogen in char also has an impact on cyanate formation. Cyanate can be formed during pyrolysis of black liquor, but at temperatures 900°C or above, the formed cyanate will decompose. Cyanate formation in gasifying conditions with different levels of CO2 in the atmosphere was also studied. Most of the char nitrogen was converted to cyanate during gasification at 800-900°C in 13-50% CO2 in N2, and only 5% of the initial fuel nitrogen was converted to NO during char conversion. The formed smelt cyanate was stable at 800°C 13% CO2, while it decomposed at 900°C 13% CO2. The cyanate decomposition was faster at higher temperatures and in oxygen-containing atmospheres than in an inert atmosphere. The presence of CO2 in oxygencontaining atmospheres slowed down the decomposition of cyanate. This work will provide new information on how modification of black liquor affects the nitrogen chemistry during thermal conversion of black liquor and what causes cyanate formation during thermal conversion of black liquor. The formation and decomposition of cyanate was studied in order to provide new data, which would be useful in modeling of nitrogen chemistry in the recovery boiler.
Resumo:
The sensitivity of copper,zinc (CuZn)- and manganese (Mn)-superoxide dismutase (SOD) to exogenous estradiol benzoate (EB) was investigated in Wistar rats during postnatal brain development. Enzyme activities were measured in samples prepared from brains of rats of both sexes and various ages between 0 and 75 days, treated sc with 0.5 µg EB/100 g body weight in 0.1 ml olive oil/100 g body weight, 48 and 24 h before sacrifice. In females, EB treatment stimulated MnSOD activity on days 0 (66.1%), 8 (72.7%) and 15 (81.7%). In males, the stimulatory effect of EB on MnSOD activity on day 0 (113.6%) disappeared on day 8 and on days 15 and 45 it became inhibitory (40.3 and 30.5%, respectively). EB had no effect on the other age groups. The stimulatory effect of EB on CuZnSOD activity in newborn females (51.8%) changed to an inhibitory effect on day 8 (38.4%) and disappeared by day 45 when inhibition was detected again (48.7%). In males, the inhibitory effect on this enzyme was observed on days 0 (45.0%) and 15 (28.9%), and then disappeared until day 60 when a stimulatory effect was observed (38.4%). EB treatment had no effect on the other age groups. The sensitivity of MnSOD to estradiol differed significantly between sexes during the neonatal and prepubertal period, whereas it followed a similar pattern thereafter. The sensitivity of CuZnSOD to estradiol differed significantly between sexes during most of the study period. Regression analysis showed that the sensitivity of MnSOD to this estrogen tended to decrease similarly in both sexes, whereas the sensitivity of CuZnSOD showed a significantly different opposite tendency in female and male rats. These are the first reports indicating hormonal modulation of antioxidant enzyme activities related to the developmental process.
Resumo:
Research has highlighted the adequacy of Markov regime-switching model to address dynamic behavior in long term stock market movements. Employing a purposed Extended regime-switching GARCH(1,1) model, this thesis further investigates the regime dependent nonlinear relationship between changes in oil price and stock market volatility in Saudi Arabia, Norway and Singapore for the period of 2001-2014. Market selection is prioritized to national dependency on oil export or import, which also rationalizes the fitness of implied bivariate volatility model. Among two regimes identified by the mean model, high stock market return-low volatility regime reflects the stable economic growth periods. The other regime characterized by low stock market return-high volatility coincides with episodes of recession and downturn. Moreover, results of volatility model provide the evidence that shocks in stock markets are less persistent during the high volatility regime. While accelerated oil price rises the stock market volatility during recessions, it reduces the stock market risk during normal growth periods in Singapore. In contrast, oil price showed no significant notable impact on stock market volatility of target oil-exporting countries in either of the volatility regime. In light to these results, international investors and policy makers could benefit the risk management in relation to oil price fluctuation.
Resumo:
The aim of the present study was to investigate the effects of daily intragastric administration of bullfrog oil (oleic, linoleic and palmitoleic acid-rich oil), corresponding to 0.4% of body weight for four weeks, on fatty acid composition and oxidative stress (lipid peroxidation and catalase activity) in mouse liver. The activities of aspartate aminotransferase (AST), alkaline phosphatase (ALP), alanine aminotransferase (ALT), and gamma-glutamyltransferase (GGT), biomarkers of tissue injury, were determined in liver homogenates and serum. The proportions of 18:2n-6, 20:4n-6, 20:5n-3, and 22:6n-3 (polyunsaturated fatty acids, from 37 to 60%) in the total fatty acid content were increased in the liver of the bullfrog oil-treated group (P < 0.05) compared to control. At the same time, a significant decrease in the relative abundance of 14:0, 16:0, and 18:0 (saturated fatty acids, from 49 to 25%) was observed. The hepatic content of thiobarbituric acid reactive substances (TBARS) was increased from 2.3 ± 0.2 to 12.3 ± 0.3 nmol TBA-MDA/mg protein and catalase activity was increased from 840 ± 32 to 1110 ± 45 µmol reduced H2O2 min-1 mg protein-1 in the treated group. Bullfrog oil administration increased AST and ALP activities in the liver (from 234.10 ± 0.12 to 342.84 ± 0.13 and 9.38 ± 0.60 to 20.06 ± 0.27 U/g, respectively) and in serum (from 95.41 ± 6.13 to 120.32 ± 3.15 and 234.75 ± 11.5 to 254.41 ± 2.73 U/l, respectively), suggesting that this treatment induced tissue damage. ALT activity was increased from 287.28 ± 0.29 to 315.98 ± 0.34 U/g in the liver but remained unchanged in serum, whereas the GGT activity was not affected by bullfrog oil treatment. Therefore, despite the interesting modulation of fatty acids by bullfrog oil, a possible therapeutic use requires care since some adverse effects were observed in liver.
Resumo:
The seed oil of Azadirachta indica A. Juss (neem) is used in traditional medicine for its antidiabetic, spermicidal, antifertility, antibacterial, and wound healing properties. The present study was undertaken to investigate the quantitative aspects of follicular development in cyclic female albino rats (135 ± 10 g; 8 groups with 6 animals in each group) after oral administration of polar (PF) and non-polar (NPF) fractions of A. indica seed extract at 3 and 6 mg kg body weight-1 day-1 and Melia azedarach Linn. (dharek) seed extract at 24 mg kg body weight-1 day-1 for 18 days. The extracts were prepared using a flash evaporator at 35°C and then dissolved in olive oil to prepare doses on a per kg body weight basis. There was a significant reduction (P = 0.05) in the number of normal single layered follicles (A. indica: 0.67 ± 0.33 and 4.67 ± 2.03 after 3 and 6 mg/kg NPF, and 3.33 ± 1.67 and 1.00 ± 1.00 after 3 and 6 mg/kg PF vs control: 72.67 ± 9.14 and M. azedarach: 0.60 ± 0.40 and 1.80 ± 1.2 after 24 mg/kg PF and NPF, respectively, vs control: 73.40 ± 7.02) and follicles in various stages (I-VII) of follicular development in all treatment groups. These extracts also significantly reduced (P = 0.05) the total number of normal follicles in the neem (14.67 ± 5.93 and 1.00 ± 1.00 after 3 and 6 mg/kg PF and 3.67 ± 0.88 and 5.33 ± 2.03 after 3 and 6 mg/kg NPF) and dharek (13.00 ± 3.58 and 14.60 ± 2.25 after 24 mg/kg NPF and PF) treatments compared to control (216.00 ± 15.72 and 222.20 ± 19.52, respectively). Currently, indiscriminate use of persistent and toxic rodenticides to control rodent populations has created serious problems such as resistance and environmental contamination. Therefore, it becomes necessary to use ecologically safe and biologically active botanical substances that are metabolized and are not passed on to the next trophic level, and that interfere with the reproductive potential particularly growth and differentiation of follicles. This may help elevate the socio-economic status of the country. Thus, the present study is an attempt to investigate the effects of A. indica and M. azedarach seed extracts on reproduction of albino rats.
Resumo:
Dental caries and periodontal disease are associated with oral pathogens. Several plant derivatives have been evaluated with respect to their antimicrobial effects against such pathogenic microorganisms. Lippia sidoides Cham (Verbenaceae), popularly known as "Alecrim-pimenta" is a typical shrub commonly found in the Northeast of Brazil. Many plant species belonging to the genus Lippia yield very fragrant essential oils of potential economic value which are used by the industry for the commercial production of perfumes, creams, lotions, and deodorants. Since the leaves of L. sidoides are also extensively used in popular medicine for the treatment of skin wounds and cuts, the objective of the present study was to evaluate the composition and antimicrobial activity of L. sidoides essential oil. The essential oil was obtained by hydro-distillation and analyzed by GC-MS. Twelve compounds were characterized, having as major constituents thymol (56.7%) and carvacrol (16.7%). The antimicrobial activity of the oil and the major components was tested against cariogenic bacterial species of the genus Streptococcus as well as Candida albicans using the broth dilution and disk diffusion assays. The essential oil and its major components thymol and carvacrol exhibited potent antimicrobial activity against the organisms tested with minimum inhibitory concentrations ranging from 0.625 to 10.0 mg/mL. The most sensitive microorganisms were C. albicans and Streptococcus mutans. The essential oil of L. sidoides and its major components exert promising antimicrobial effects against oral pathogens and suggest its likely usefulness to combat oral microbial growth.
Resumo:
We determined the effect of fish oil (FO) ingestion on colonic carcinogenesis in rats. Male Wistar rats received 4 subcutaneous injections (40 mg/kg body weight each) of 1,2-dimethylhydrazine (DMH) at 3-day intervals and were fed a diet containing 18% by weight FO (N = 10) or soybean oil (SO, N = 10) for 36 weeks. At sacrifice, the colon was removed, aberrant crypt foci were counted and the fatty acid profile was determined. Intestinal tumors were removed and classified as adenoma or carcinoma. Liver and feces were collected and analyzed for fatty acid profile. FO reduced the mean (± SEM) number of aberrant crypt foci compared to SO (113.55 ± 6.97 vs 214.60 ± 18.61; P < 0.05) and the incidence of adenoma (FO: 20% vs SO: 100%), but carcinoma occurred equally in FO and SO rats (2 animals per group). The polyunsaturated fatty acid (PUFA) profile of the colon was affected by diet (P < 0.05): total ω-3 (FO: 8.18 ± 0.97 vs SO: 1.71 ± 0.54%) and total ω-6 (FO: 3.83 ± 0.59 vs SO: 10.43 ± 1.28%). The same occurred in the liver (P < 0.05): total ω-3 (FO: 34.41 ± 2.6 vs SO: 6.46 ± 0.59%) and total ω-6 (FO: 8.73 ± 1.37 vs SO: 42.12 ± 2.33%). The PUFA profile of the feces and liver polyamine levels did not differ between groups (P > 0.05). In conclusion, our findings indicate that chronic FO ingestion protected against the DMH-induced preneoplastic colon lesions and adenoma development, but not against carcinoma in rats.
Resumo:
Searching for effective Smad3 gene-based gene therapies for hepatic fibrosis, we constructed siRNA expression plasmids targeting the rat Smad3 gene and then delivered these plasmids into hepatic stellate cells (HSCs). The effect of siRNAs on the mRNA levels of Smad2, Smad3, Smad4, and collagens I-α1, III-α1 and IV-α1 (Colα1, Col3α1, Col4α1, respectively) was determined by RT-PCR. Eighty adult male Sprague-Dawley rats were randomly divided into three groups. Twice a week for 8 weeks, the untreated hepatic fibrosis model (N = 30) and the treated group (N = 20) were injected subcutaneously with 40% (v/v) carbon tetrachloride (CCl4)-olive oil (3 mL/kg), and the normal control group (N = 30) was injected with olive oil (3 mL/kg). In the 4th week, the treated rats were injected subcutaneously with liposome-encapsulated plasmids (150 µg/kg) into the right liver lobe under general anesthesia once every 2 weeks, and the untreated rats were injected with the same volume of buffer. At the end of the 6th and 8th weeks, liver tissue and sera were collected. Pathological changes were assessed by a semi-quantitative scoring system (SSS), and a radioimmunoassay was used to establish a serum liver fibrosis index (type III procollagen, type IV collagen, laminin, and hyaluronic acid). The mRNA expression levels of the above cited genes were reduced in the HSCs transfected with the siRNA expression plasmids. Moreover, in the treated group, fibrosis evaluated by the SSS was significantly reduced (P < 0.05) and the serum indices were greatly improved (P < 0.01). These results suggest that Smad3 siRNA expression plasmids have an anti-fibrotic effect.
Antioxidant activity of rosemary and oregano ethanol extracts in soybean oil under thermal oxidation
Resumo:
Four experiments were conducted to measure the antioxidant activity of ethanol extracts of rosemary and oregano compared with synthetic antioxidants such as TBHQ and BHA/BHT. The antioxidant activity was determined and results differed from those of the Oven test at 63º C. Peroxide values and absorptivities at 232 nm of soybean oil under Oven test were lower in treatments with 25, 50, 75, 100 and 200 mg.Kg-1 TBHQ than in treatments with 1000 mg.Kg-1 oregano extract (O), 500 mg.Kg-1 rosemary extract (R) and their mixture R+O. All the treatments were effective in controlling the thermal oxidation of oils; the natural extracts were as effective as BHA+BHT and less effective than TBHQ. The natural extracts were mixed with 25, 50, 75 and 100 mg.Kg-1 TBHQ and then added to the oil. No improvement in antioxidative properties was observed. The best antioxidant concentration could be determined from polynomial regression and quadratic equation from the experimental data.