942 resultados para Co(II) and Ni(II) pyrazolyl complexes
Resumo:
The complexes of monothiobiuret with Co(II), Ni(II), Cd(II) and Hg(II) chlorides are investigated. The ligand is suggested to be unidentate bonding through sulfur in Co(II) and Hg(II) complexes and bidentate bonding through both sulfur and oxygen atoms in the other two complexes.
Resumo:
Anion directed, template syntheses of two dinuclear copper(II) complexes of mono-condensed Schiff base ligand Hdipn (4-[(3-aminopentylimino)-methyl]-benzene-1,3-diol) involving 2,4- dihydroxybenzaldehyde and 1,3-diaminopentane were realized in the presence of bridging azide and acetate anions. Both complexes, [Cu-2(dipn)(2)(N-3)(2)] (1) and [Cu-2(dip(n))(2)(OAc)(2)] (2) have been characterized by X-ray crystallography. The two mononuclear units are joined together by basal-apical, double end-on azido bridges in complex 1 and by basal-apical, double mono-atomic acetate oxygen-bridges in 2. Both complexes form rectangular grid-like supramolecular structures via H-bonds connecting the azide or acetate anion and the p-hydroxy group of 2,4- dihydroxybenzaldehyde. Variable-temperature (300-2 K) magnetic susceptibility measurements reveal that complex 1 has antiferromagnetic coupling (J = -2.10 cm (1)) through the azide bridge while 2 has intra-dimer ferromagnetic coupling through the acetate bridge and inter-dimer antiferromagnetic coupling through H-bonds (J = 2.85 cm (1), J' = -1.08 cm (1)). (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
Cobalt(III) complexes [Co(pnt)(B)(2)](NO3)(2) (1-3) of pyridine-2-thiol (pnt) and phenanthroline bases (B), viz. 1,10-phenanthroline (phen in 1), dipyrido[3,2-d: 2',3'-f]quinoxaline (dpq in 2) and dipyrido[3,2-a:2',3'-c] phenazine (dppz in 3), have been prepared, characterized and their photo-induced anaerobic DNA cleavage activity studied. The crystal structure of 1a as mixed ClO4- and PF6- salt of 1 shows a (CoN5S)-N-III coordination geometry in which the pnt and phen showed N,S- and N,N-donor binding modes, respectively. The complexes exhibit Co(III)/Co(II) redox couple near -0.3 V (vs. SCE) in 20% DMF-Tris-HCl buffer having 0.1 M TBAP. The complexes show binding propensity to calf thymus DNA giving K-b values within 2.2 x 10(4)-7.3 x 10(5) M-1. Thermal melting and viscosity data suggest DNA surface and/or groove binding of the complexes. The complexes show significant anaerobic DNA cleavage activity in red light under argon atmosphere possibly involving sulfide anion radical or thiyl radical species. The DNA cleavage reaction under aerobic medium in red light is found to involve both singlet oxygen and hydroxyl radical pathways. The dppz complex 3 shows non-specific BSA and lysozyme protein cleavage activity in UV-A light of 365 nm via both hydroxyl and singlet oxygen pathways. The dppz complex 3 exhibits photocytotoxicity in HeLa cervical cancer cells giving IC50 values of 767 nM and 19.38 mu M in UV-A light of 365 nm and in the dark, respectively. A significant reduction of the dark toxicity of the dppz base (IC50 = 8.34 mu M in dark) is observed on binding to the cobalt(III) center.
Resumo:
A macrocyclic hydrazone Schiff base was synthesized by reacting 1,4-dicarbonyl phenyl dihydrazide with 2,6-diformyl-4-methyl phenol and a series of metal complexes with this new Schiff base were synthesized by reaction with Co(II), Ni(II) and Cu(II) metal salts. The Schiff base and its complexes have been characterized by elemental analyses, IR, H-1 NMR, UV-vis, FAB mass, ESR spectra, fluorescence, thermal, magnetic and molar conductance data. The analytical data reveal that the Co(II), Ni(II) and Cu(II) complexes possess 2:1 metal-ligand ratios. All the complexes are non-electrolytes in DMF and DMSO due to their low molar conductance values. Infrared spectral data suggest that the hydrazone Schiff base behaves as a hexadentate ligand with NON NON donor sequence towards the metal ions. The ESR spectral data shows that the metal-ligand bond has considerable covalent character. The electrochemical behavior of the copper(II) complex was investigated by cyclic voltammetry. The Schiff base and its complexes have also been screened for their antibacterial (Escherichia coli, Staphylococcus aureus, Shigella dysentery, Micrococcus, Bacillus subtilis, Bacillus cereus and Pseudomonas aeruginosa) and antifungal activities (Aspergillus niger, Penicillium and Candida albicans) by MIC method. The brine shrimp bioassay was also carried out to study their in-vitro cytotoxic properties. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
Diphenyl sulphoxide (DPSO) complexes of some divalent metal perchlorates and chlorides are prepared The perchlorates of Mn, Co, Ni, Zn and Cd have the general formula [M(DPSO)6](CIO4)2. The Cu(II) complex is found to have the composition [Cu(DPSO)4] (CIO42. The chloro complex having the formula ZnCl2. 2DPSO, CdCl2.DPSO, HgCl2. DPSO and PdCl2. 2 DPSO have also been obtained. Infrared spectra indicate that the DPSO complexes of Mn, Co, Ni, Cu and Zn are oxygen-bonded while those of Cd, Hg and Pd are sulphur-bonded. The magnetic susceptibility and the optical spectral data reveal octahedral coordination for Mn, Co and Ni complexes. From the electronic spectra of Co and NI complexes, the ligand field parameters, Dq and β, are calculated.
Resumo:
ORANGE red and amorphous peroxy-titanium complexes of oxalic, malonic and maleic acids1-3, when vacuum-dried, have co-ordinated water molecules firmly bonded to the central titanium atom as shown in formula (I). The peroxy-oxygen from these compounds is slowly lost even at room temperature because of the strained peroxy-group3,4. The compounds, when kept at 95°-100°C. for about three days, give deperoxygenated compounds of the type (II). However, a sample of peroxy-titanium oxalate sealed in a glass tube lost all its peroxy-oxygen in about four years and gave a white crystalline basic oxalate (II). The amorphous nature of the compounds may be due to random hydrogen bonding in the complexes. The crystallinity observed in one of the deperoxygenated titanyl oxalates may be due to the rearrangement of the molecules during ageing for more than four years. The infra-red absorption of these compounds was studied to find out the effect of co-ordination and hydrogen bonding on the infra-red bands of the free water.
Resumo:
Copper(II) hydrazine carboxylate monohydrate, Cu(N2H3COO)2·H2O and chromium (II, III) hydrazine carboxylate hydrates, Cu(N2H3COO)2·H2O and Cu(N2H3COO)2·3H2O have been prepared and characterised by chemical analysis, IR, visible spectra and magnetic measurements. Thermal analysis of the copper complex yields a mixture of copper metal and copper oxide. Chromium complexes on thermal decomposition yield Cr2O3 as residue. Decomposition of chromium(HI) complex under hydrothermal conditions yield CrOOH, a precursor to CrO2.
Resumo:
Microporous polybenzimidazole (PBI) of 250–500 μm bead size has been epoxidized and subsequently reacted with l-cysteine in the presence of a phase-transfer catalyst at room temperature to obtain a sorbent having anchored l-cysteine, EPBI(Cyst). The sorption of Cu(II), Ni(II), Co(II), and Zn(II) in mildly acidic and ammoniacal solutions has been measured under comparable conditions on EPBI(Cyst) and Dowex 50W-X8(H+) resins. While the latter shows no appreciable difference in sorption of the four metals in acidic and ammoniacal media and has 40–60 % selectivity for copper(II) over the other three, EPBI(Cyst) shows a threefold increase in copper sorption and more than 90% copper selectivity over the other metals in ammoniacal media, compared to mildly acidic media. The copper binding constant and saturation capacity of EPBI(Cyst) in ammoniacal media decrease only slowly beyond pH 11.6 with the result that the resin shows significant sorption of Cu(II) even in strongly ammoniacal solutions. The sorbed copper is stripped with HCl relatively easily. The copper sorption kinetics on EPBI(Cyst) is unusually fast in ammoniacal media with more than 90 % of equilibrium sorption being attained in one minute.
Resumo:
Design and synthesis of three novel 2 + 2] self-assembled molecular rectangles 1-3 via coordination driven self-assembly of predesigned Pd(II) ligands is reported. 1,8-Diethynylanthracene was assembled with trans-Pd(PEt3)(2)Cl-2 in the presence of CuCl catalyst to yield a neutral rectangle 1 via Pd-C bond formation. Complex 1 represents the first example of a neutral molecular rectangle obtained via C-Pd coordination driven self-assembly. A new Pd-2(II) organometallic building block with 180 degrees bite-angle 1,4-bistrans-(ethynyl)Pd(PEt3)(2)(NO3)] benzene (M-2) containing ethynyl functionality was synthesized in reasonable yield by employing Sonagashira coupling reaction. Self-assembly of M-2 with two organic clip-type donors (L-2-L-3) afforded 2 + 2] self-assembled molecular rectangles 2 and 3, respectively L-2 = 1,8-bis(4-pyridylethynyl) anthracene; L-3 = 1,3-bis(3-pyridyl) isophthalamide]. The macrocycles 1-3 were fully characterized by multinuclear NMR and ESI-MS spectroscopic techniques, and in case of 1 the structure was unambiguously determined by single crystal X-ray diffraction analysis. Incorporation of Pd-ethynyl bonds helped to make the assemblies p-electron rich and fluorescent in nature. Complexes 1-2 showed quenching of fluorescence intensity in solution in presence of nitroaromatics, which are the chemical signatures of many commercially available explosives.
Resumo:
Studies of the reaction of metal chlorides, MCl2 (M = Mn, Co, Ni, Cu, Zn) with PPHF at room temperature have shown that Mn, Co and Zn form the corresponding metal fluorides, MF2, while Ni and Cu form their dipyridine metal(II) dichloride complexes. Nickel and copper complexes further undergo fluorination and complexation by potassium hydrogen fluoride in PPHF to form KNiF3 and KCuF3.
Resumo:
Ferrocenyl terpyridine 3d metal complexes and their analogues, viz. [M(Fc-tpy)(2)](ClO(4))(2) (1-4), [Zn(Ph-tpy)(2)](ClO(4))(2) (5) and [Zn(Fc-dpa)(2)]X(2) (X = ClO(4), 6; PF6, 6a), where M = Fe(II) in 1, Co(II) in 2, Cu(II) in 3 and Zn(II) in 4, Fc-tpy is 4'-ferrocenyl-2,2': 6', 2 `'-terpyridine, Ph-tpy is 4'-phenyl-2,2': 6', 2 `'-terpyridine and Fc-dpa is ferrocenyl-N,N-dipicolylmethanamine, are prepared and their DNA binding and photocleavage activity in visible light studied. Complexes 2, 4, 5 and 6a that are structurally characterized by X-ray crystallography show distorted octahedral geometry with the terpyridyl ligands binding to the metal in a meridional fashion, with Fc-dpa in 6a showing a facial binding mode. The Fc-tpy complexes display a charge transfer band in the visible region. The ferrocenyl (Fc) complexes show a quasi-reversible Fc(+)-Fc redox couple within 0.48 to 0.66 V vs. SCE in DMF-0.1 M TBAP. The DNA binding constants of the complexes are similar to 10(4) M(-1). Thermal denaturation and viscometric data suggest DNA surface binding through electrostatic interaction by the positively charged complexes. Barring the Cu(II) complex 3, the complexes do not show any chemical nuclease activity in the presence of glutathione. Complexes 1-4 exhibit significant plasmid DNA photocleavage activity in visible light via a photoredox pathway. Complex 5, without the Fc moiety, does not show any DNA photocleavage activity. The Zn(II) complex 4 shows a significant PDT effect in HeLa cancer cells giving an IC(50) value of 7.5 mu M in visible light, while being less toxic in the dark (IC(50) = 49 mu M).
Resumo:
An equimolar mixture of Ni(NO(3))(2)center dot 6H(2)O and pyridine-2-aldehyde with two equivalents of NaN(3) in methanol in the presence of NaOMe resulted in the formation of light green precipitate which upon crystallization from dimethylformamide (DMF) yielded light green single crystals [{Ni(2)Na(2)(pic)(4)(N(3))(2)(H(2)O)(2)(MeOH)}center dot MeOH center dot 3H(2)O](n) (1) and [{Ni(2)Na(2)(pic)(4)(N(3))(2)(H(2)O)(4)}center dot 2DMF center dot H(2)O](n) (2) (pic = pyridine-2-carboxylate) at room temperature and high temperature (100 degrees C), respectively. Variable temperature magnetic studies revealed the existence of overall ferromagnetic behaviour with J approximate to + 10 cm(-1) and D approximate to -2 to -7 cm(-1) for 1 and 2, respectively. Negative D values as well as variation of D upon slight distortion of structure by varying reaction temperature were observed. The X-band Electron Paramagnetic Resonance (EPR) spectra of both 2 and 3 were recorded below 50 K. The structural distortion was also implicated from the EPR spectra. Density Functional Theory (DFT) calculations on both complexes were performed in two different ways to corroborate the magnetic results. Considering only Ni(2)(II) dimeric unit, results were J = + 20.65 cm(-1) and D = -3.16 cm(-1) for 1, and J = +24.56 cm(-1) and D = -4.67 cm(-1) for 2. However, considering Ni(2)(II)Na(2)(I) cubane as magnetic core the results were J = +16.35 cm(-1) (1), +19.54 cm(-1) (2); D = -3.05 cm(-1) (1), -4.25 cm(-1) (2).
Resumo:
The transition metal complexes of salicylhydrazone of anthranilhydrazide (H2L) were synthesised. The structures of metal complexes were characterized by various spectroscopic [IR, NMR, UV-Vis, EPR], thermal and other physicochemical methods. The single-crystal X-ray diffraction study of [Cu(HL)Cl]center dot H2O reveal its orthorhombic system with space group P2(1)2(1)2 and Z=4. The copper center has a distorted square planar geometry with ONO and Cl as the donor atoms. The ligand and its metal chelates have been screened for their antimicrobial and anti-tubercular activities using serial dilution method. Metal complexes in general have exhibited better antibacterial and antifungal activity than the free ligand and in few cases better than the standard used. Among the bacterial strains used, the complexes are highly potent against Gram-positive strains compared to Gram-negative. Anti-tubercular activity exhibited by the Co(II) complex is comparable with the standard used. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
Copper(II) complexes of ferrocene(Fc)-conjugated reduced Schiff base of L-tyrosine (Fc-TyrH), viz., Cu(Fc-Tyr)(L)](ClO4), where L is 1,10-phenanthroline (phen, 1), dipyrido3,2-d:2',3'-f]quinoxaline (dpq, 2), dipyrido3,2-a:2',3'-c]phenazine (dppz, 3) and 2-(naphthalen-1-yl)-1H-imidazo4,5-f]1,10]phenanthroline (nip, 4), were prepared and tested for their photocytotoxicity in cancer cells. Cu(Fc-Phe)(phen)](-ClO4) (5) of L-phenylalanine and Cu(Ph-Tyr)(L)(ClO4)] of the reduced Schiff base Ph-TyrH derived from benzaldehyde and L-tyrosine having phen (6) and dppz (7), and Cu(Ph-Phe)(phen)(ClO4)] (8) using L-phenylalanine were prepared and used as controls. Complexes 5 and 6 were structurally characterized by X-ray crystallography. A copper(II)-based d-d band near 600 nm and a ferrocenyl band at similar to 450 nm were observed in DMF-Tris-HCI buffer (1:4 v/v) in respective complexes. The complexes are photocleavers of pUC19 DNA in visible light forming (OH)-O-center dot radicals. They are cytotoxic in HeLa (human cervical cancer) and MCF-7 (human breast cancer) cells showing an enhancement of cytotoxicity in visible light. Fluorescence imaging shows nuclear localization of the complexes.
Resumo:
Ferrocenyl platinum(II) complexes (1-3), viz. Pt(Fc-tpy)Cl]Cl (1), Pt(Fc-tpy)(NPC)]Cl (2, HNPC = N-propargyl carbazole) and Pt(Fc-bpa)Cl]Cl (3), were prepared, characterized and their anti-proliferative properties in visible light in human keratinocyte (HaCaT) cell lines have been studied. Pt(Ph-tpy)Cl]Cl (4) was prepared and used as a control. Complexes 1 and 3, structurally characterized by X-ray crystallography, show distorted square-planar geometry for the platinum(II) centre. Complexes 1 and 2 having the Fc-tpy ligand showed an intense absorption band at similar to 590 nm. The ferrocenyl complexes are redox active showing the Fc(+)-Fc couple near 0.6 V vs. SCE in DMF-0.1 M tetrabutylammonium perchlorate (TBAP). Complexes 1-3 showed external binding to calf thymus DNA. Both 1 and 2 showed remarkable photocytotoxicity in HaCaT cell lines giving respective IC50 values of 9.8 and 12.0 mu M in visible light of 400-700 nm with low dark toxicity (IC50 > 60 mu M). Fluorescent imaging studies showed the spread of the complexes throughout the cell localising both in cytoplasm and the nucleus. The ferrocenyl complexes triggered apoptosis on light exposure as evidenced from the Annexin V-FITC/PI and DNA ladder formation assays. Spectral studies revealed the formation of ferrocenium ions upon photo-irradiation generating cytotoxic hydroxyl radicals via a Fenton type mechanism. The results are rationalized from a TDDFT study that shows involvement of ferrocene and the platinum coordinated terpyridine moiety as respective HOMO and LUMO.