960 resultados para Cns Midline


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neurodegeneration is a complex process involving different cell types andneurotransmitters. A common characteristic of neurodegenerative disorders such asAlzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis, Huntington’s disease (HD) and Amyotrophic Lateral Sclerosis (ALS) is the occurrence of a neuroinflammatoryreaction in which cellular processes involving glial cells (mainly microglia and astrocytes) and T cells are activated in response to neuronal death. This inflammatory reaction has recently received attention as an unexpected potential target for the treatment of these diseases.Microglial cells have a mesenchymal origin, invade the central nervous system (CNS)prenatally (Chan et al., 2007b) and are the resident macrophages in the CNS (Ransohoff &Perry, 2009). They comprise approximately 10-20% of adult glia and serve as the CNS innateimmune system. In neurodegenerative diseases, microglia is activated by misfoldedproteins. In the case of AD, amyloid- (A ) peptides accumulate extracellularly and activate the microglia locally. In the case of PD, ALS and HD, the misfolded proteins accumulate intracellularly but are still associated with activation of the microglia (Perry et al., 2010). Reactive microglia in the substantia nigra and striatum of PD brains have been described, and increased levels of proinflammatory cytokines and inducible nitric oxide synthase havebeen detected in these brain regions, providing evidence of a local inflammatory reaction (Hirsch & Hunot, 2009). The injection of lipopolysaccharide (a potent microglia activator) into the substantia nigra produces microglial activation and the death of dopaminergic cells. These findings support the hypothesis that microglial activation and neuroinflammationcontribute to PD pathogenesis (Herrera et al., 2000)...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To assess the utility of retigabine (RTG) for epilepsy in clinical practice at a single UK tertiary centre. METHODS: We identified all individuals who were offered RTG from April 2011 to May 2013. We collected demographics, seizure types, previous and current antiepileptic drugs (AEDs), starting and maximum attained daily dose of RTG, clinical benefits, side effects, and reason to discontinue RTG from in- and outpatient encounters until February 28, 2014. RESULTS: 145 people who had failed a median of 11 AEDs took at least one dose of RTG. One year retention was 32% and decreased following the safety alert by the US Federal Drug Administration (FDA) in April 2013. None became seizure free. 34 people (24%) reported a benefit that was ongoing at last assessment in five (3%). The most relevant benefit was the significant reduction or cessation of drop attacks or seizure-related falls in four women, this persisted at last assessment in two. The presence of simple partial seizures was associated with longer retention, as was a higher attained dose of RTG. Adverse effects were seen in 74% and largely CNS-related or nonspecific and affected the genitourinary system in 13%. CONCLUSION: Retention of RTG was less favourable compared to data from open label extension studies of the regulatory trials. In comparison with historical data on similar retention audits retention of RTG at one year appears to be less than lamotrigine, topiramate, levetiracetam, pregabalin, zonisamide, and lacosamide, and slightly higher than gabapentin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary: Mastitis caused by CNS in the cow

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wild-type A75/17-Canine distemper virus (CDV) is a highly virulent strain, which induces a persistent infection in the central nervous system (CNS) with demyelinating disease. Wild-type A75/17-CDV, which is unable to replicate in cell lines to detectable levels, was adapted to grow in Vero cells and was designated A75/17-V. Sequence comparison between the two genomes revealed seven nucleotide differences located in the phosphoprotein (P), the matrix (M) and the large (L) genes. The P gene is polycistronic and encodes two auxiliary proteins, V and C, besides the P protein. The mutations resulted in amino acid changes in the P and V, but not in the C protein, as well as in the M and L proteins. Here, a rescue system was developed for the A75/17-V strain, which was shown to be attenuated in vivo, but retains a persistent infection phenotype in Vero cells. In order to track the recombinant virus, an additional transcription unit coding for the enhanced green fluorescent protein (eGFP) was inserted at the 3' proximal position in the A75/17-V cDNA clone. Reverse genetics technology will allow us to characterize the genetic determinants of A75/17-V CDV persistent infection in cell culture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Until recently, neurosurgeons eagerly removed cerebellar lesions without consideration of future cognitive impairment that might be caused by the resection. In children, transient cerebellar mutism after resection has lead to a diminished use of midline approaches and vermis transection, as well as reduced retraction of the cerebellar hemispheres. The role of the cerebellum in higher cognitive functions beyond coordination and motor control has recently attracted significant interest in the scientific community, and might change the neurosurgical approach to these lesions. The aim of this study was to investigate the specific effects of cerebellar lesions on memory, and to assess a possible lateralisation effect. METHODS: We studied 16 patients diagnosed with a cerebellar lesion, from January 1997 to April 2005, in the "Centre Hospitalier Universitaire Vaudois (CHUV)", Lausanne, Switzerland. Different neuropsychological tests assessing short term and anterograde memory, verbal and visuo-spatial modalities were performed pre-operatively. RESULTS: Severe memory deficits in at least one modality were identified in a majority (81%) of patients with cerebellar lesions. Only 1 patient (6%) had no memory deficit. In our series lateralisation of the lesion did not lead to a significant difference in verbal or visuo-spatial memory deficits. FINDINGS: These findings are consistent with findings in the literature concerning memory deficits in isolated cerebellar lesions. These can be explained by anatomical pathways. However, the cross-lateralisation theory cannot be demonstrated in our series. The high percentage of patients with a cerebellar lesion who demonstrate memory deficits should lead us to assess memory in all patients with cerebellar lesions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O objetivo deste trabalho foi avaliar o desempenho de 18 clones de seringueira resistentes ao Microcyclus ulei, usados como copas enxertadas. Foram utilizados oito clones híbridos de Hevea pauciflora x Hevea guianensis var. marginata, oito de H. pauciflora x H. rigidifolia e dois clones de H. pauciflora, enxertados sobre o painel de CNS AM 7905 - seleção primária de H. brasiliensis - e cultivados em Latossolo Amarelo distrófico, em Manaus, AM. Foram avaliados: perímetro do tronco, estado nutricional e produtividade de borracha seca. Copas enxertadas de híbridos H. pauciflora x H. guianensis var. marginata causam crescimento mais rápido do tronco, com redução do período de imaturidade da seringueira. O alto nível de resistência dos híbridos de H. rigidifolia ao percevejo-de-renda (Leptopharsa heveae) justifica a introdução de outros genótipos dessa espécie para novas hibridações. Os clones CPAA C 01, 06, 13, 15, 16 e 45 apresentam excelente potencial de produção de borracha seca, nas condições climáticas e de solos de terra firme da Amazônia Tropical Úmida.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: This study investigates physical performance limitations for sports and daily activities in recently diagnosed childhood cancer survivors and siblings. METHODS: The Swiss Childhood Cancer Survivor Study sent a questionnaire to all survivors (≥ 16 years) registered in the Swiss Childhood Cancer Registry, who survived >5 years and were diagnosed 1976-2003 aged <16 years. Siblings received similar questionnaires. We assessed two types of physical performance limitations: 1) limitations in sports; 2) limitations in daily activities (using SF-36 physical function score). We compared results between survivors diagnosed before and after 1990 and determined predictors for both types of limitations by multivariable logistic regression. RESULTS: The sample included 1038 survivors and 534 siblings. Overall, 96 survivors (9.5%) and 7 siblings (1.1%) reported a limitation in sports (Odds ratio 5.5, 95%CI 2.9-10.4, p<0.001), mainly caused by musculoskeletal and neurological problems. Findings were even more pronounced for children diagnosed more recently (OR 4.8, CI 2.4-9.6 and 8.3, CI 3.7-18.8 for those diagnosed <1990 and ≥ 1990, respectively; p=0.025). Mean physical function score for limitations in daily activities was 49.6 (CI 48.9-50.4) in survivors and 53.1 (CI 52.5-53.7) in siblings (p<0.001). Again, differences tended to be larger in children diagnosed more recently. Survivors of bone tumors, CNS tumors and retinoblastoma and children treated with radiotherapy were most strongly affected. CONCLUSION: Survivors of childhood cancer, even those diagnosed recently and treated with modern protocols, remain at high risk for physical performance limitations. Treatment and follow-up care should include tailored interventions to mitigate these late effects in high-risk patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context: Fibroblast growth factor (FGF) 8 is important for GnRH neuronal development with human mutations resulting in Kallmann syndrome. Murine data suggest a role for Fgf8 in hypothalamo-pituitary development; however, its role in the etiology of wider hypothalamo-pituitary dysfunction in humans is unknown.Objective: The objective of this study was to screen for FGF8 mutations in patients with septo-optic dysplasia (n = 374) or holoprosencephaly (HPE)/midline clefts (n = 47).Methods: FGF8 was analyzed by PCR and direct sequencing. Ethnically matched controls were then screened for mutated alleles (n = 480-686). Localization of Fgf8/FGF8 expression was analyzed by in situ hybridization in developing murine and human embryos. Finally, Fgf8 hypomorphic mice (Fgf8(loxPNeo/-)) were analyzed for the presence of forebrain and hypothalamo-pituitary defects.Results: A homozygous p.R189H mutation was identified in a female patient of consanguineous parentage with semilobar HPE, diabetes insipidus, and TSH and ACTH insufficiency. Second, a heterozygous p.Q216E mutation was identified in a female patient with an absent corpus callosum, hypoplastic optic nerves, and Moebius syndrome. FGF8 was expressed in the ventral diencephalon and anterior commissural plate but not in Rathke's pouch, strongly suggesting early onset hypothalamic and corpus callosal defects in these patients. This was consolidated by significantly reduced vasopressin and oxytocin staining neurons in the hypothalamus of Fgf8 hypomorphic mice compared with controls along with variable hypothalamo-pituitary defects and HPE.Conclusion: We implicate FGF8 in the etiology of recessive HPE and potentially septo-optic dysplasia/Moebius syndrome for the first time to our knowledge. Furthermore, FGF8 is important for the development of the ventral diencephalon, hypothalamus, and pituitary. (J Clin Endocrinol Metab 96: E1709-E1718, 2011)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: HAART has contributed to decrease the HIV-related mortality and morbidity. However, the prevalence of HIV-associated neurocognitive disorders (HAND) seems to have increased. The aim of this study was to determine the prevalence of cognitive complaint and of HAND in a cohort of aviremic HIV_patients in the South-western part of Switzerland. Design/Methods: Two hundred HIV_ patients who had (1) undetectable HIV RNA concentrations in the plasma for_3 months, (2) no history of major opportunistic infection of the CNS in the past three years, (3) no current use of IV drugs and (4) no signs of major depression according to the DSM-IV criteria, answered a questionnaire designed to elicit cognitive complaints. Cognitive functions of a subset of HIV_ patients with or without cognitive complaints were assessed using the HIV Dementia scale (HDS) and a battery of neuropsychological tests evaluating the sub-cortical functions. Cognitive impairment was defined according to the revised diagnostic criteria for HAND. Non-parametric tests were used for statistics and a Bonferroni corrected standard p level of pB0.002 was applied for multiple comparisons. Results: The prevalence of cognitive complaints was 27% (54 patients) among the 200 questioned patients. At the time of writing this abstract, cognitive functions of 50 complaining and 28 noncomplaining aviremic patients had been assessed with the HDS and the full neuropsychological battery. The prevalence of HAND producing at least mild interference in daily functioning (mild neurocognitive disorders [MND] or HIV-associated dementia [HAD]) was 44% (34/78 patients) in the group who underwent neuropsychological testing. Objective evidences of HAND were more frequent in complaining than in non-complaining patients (pB0.001). Using a ROC curve, a cut-off of 13 on the HDS was found to have a sensitivity of 74% and a specificity of 71% (p_0.001) for the diagnosis of HAND. A trend for lower CNS Penetrating-Effectiveness scores for HAART in patients with MND or HAD as compared to the others was present (1.59 0.6 vs. 1.990.6; p_0.006 [Bonferroni correction]). Conclusions/Relevance: So far, our results suggest that (1) the prevalence of HAND is high in HIV_ patients with a long-term suppression of viremia, and (2) cognitive complaints expressed by aviremic HIV_ patients should be carefully investigated as they correlate with objective evidences of cognitive decline in a neuropsychological testing. HAART with a high CNS penetrating-effectiveness may contribute to prevent HAND. Funding: Swiss HIV Cohort Study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bipolar disorder (BD) is associated with substantial morbidity, as well as premature mortality. Available evidence indicates that 'stress-sensitive' chronic medical disorders, such as cardiovascular disease, obesity and Type 2 diabetes mellitus, are critical mediators and/or moderators of BD. Changes in physiologic systems implicated in allostasis have been proposed to impact brain structures and neurocognition, as well as medical comorbidity in this population. For example, abnormalities in insulin physiology, for example, insulin resistance, hyperinsulinemia and central insulinopenia, are implicated as effectors of allostatic load in BD. Insulin's critical role in CNS physiological (e.g., neurotrophism and synaptic plasticity) and pathophysiological (e.g., neurocognitive deficits, pro-apoptosis and amyloid deposition) processes is amply documented. This article introduces the concept that insulin is a mediator of allostatic load in the BD and possibly a therapeutic target.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Natalizumab, a monoclonal antibody binding to the alpha4 integrins, is efficient in preventing relapses and progression of disability in multiple sclerosis (MS) patients. However, a total of seven MS patients treated with natalizumab suffered from progressive multifocal leukoencephalopathy (PML), on a total of 53?000 patients (data of March 6, 2009) treated with this drug. PML is a disease affecting immunosuppressed people, which is caused by the polyomavirus JC (JCV). This virus produces a lytic infection of the oligodendrocytes. Yet, natalizumab cannot be considered as a classical immunosuppressant, such as suggested by the fact that no increased incidence of other opportunistic infections was reported with this drug. It has been postulated that, by closing the blood-brain, natalizumab might prevent JCV-specific CD8_ T cells to reach the CNS and perform immune surveillance. Alternatively, it has been suggested that this drug acts by releasing JCV from the bone marrow, one of its site of latency. In this study, we address the question whether there is an increased activity of JCV in the blood of natalizumab-treated MS patients. Material and Methods: In this prospective longitudinal study, we are following a cohort of 24 MS patients receiving monthly injections of natalizumab. Blood and urine are drawn every one to three months, up to 12 months. As a control group, we follow 16 MS patients treated with IFN-beta. For this control group, there are two time-points: before and 1094 months after treatment onset. We are analysing the viral (JCV-, EBV- and CMV-) as well as the myelin- (MOG-, MOBP-) specific cellular immune responses using proliferation and ELISPOT (IFNgamma) assays. For JCV, we study the response against VP1, the major capsid protein. For JCV VP1, MOG and MOBP, we use 15-mer peptides overlapping by 10 amino acids, thus eliciting CD4_ as well as CD8_ T cell response. These peptides encompasse the whole sequence of the proteins. For EBV and CMV, we use pools of immunodominant 8- to 10-mer peptides eliciting CD8_ T cells. At the same time-points, using RTPCR, we determine the presence of JCV DNA coding for the VP1 protein in the PBMC, plasma, and urine. Results: At the time of writing this abstract, 16 patients have reached the 9-month (T9), and 11 the T12 time-point. We expect that by the ISNV meeting in June 2009, 18 and 14 patients will be at T9 and T12, respectively. Virological and immunological results will be presented. 9th International Symposium on NeuroVirology 2_6 June 2009 39 J Neurovirol Downloaded from informahealthcare.com by Cantonale et Universitaire on 06/25/10 For personal use only. Conclusions: This ongoing longitudinal prospective study should tell us whether there is an enhanced JCV activity in the peripheral blood of patients on natalizumab. This work is supported by the FNS (PP00B-106716), the Swiss MS Society and a research grant from Biogen Dompe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé Les canaux ioniques ASICs (acid-sensing ion channels) appartiennent à la famille des canaux ENaC/Degenerin. Pour l'instant, quatre gènes (1 à 4) ont été clonés dont certains présentent des variants d'épissage. Leur activation par une acidification rapide du milieu extracellulaire génère un courant entrant transitoire essentiellement sodique accompagné pour certains types d'ASICs d'une phase soutenue. Les ASICs sont exprimés dans le système nerveux, central (SNC) et périphérique (SNP). On leur attribue un rôle dans l'apprentissage, la mémoire et l'ischémie cérébrale au niveau central ainsi que dans la nociception (douleur aiguë et inflammatoire) et la méchanotransduction au niveau périphérique. Toutefois, les données sont parfois contradictoires. Certaines études suggèrent qu'ils sont des senseurs primordiaux impliqués dans la détection de l'acidification et la douleur. D'autres études suggèrent plutôt qu'ils ont un rôle modulateur inhibiteur dans la douleur. De plus, le fait que leur activation génère majoritairement un courant transitoire alors que les fibres nerveuses impliquées dans la douleur répondent à un stimulus nocif avec une adaptation lente suggère que leurs propriétés doivent être modulés par des molécules endogènes. Dans une première partie de ma thèse, nous avons abordé la question de l'expression fonctionnelle des ASICs dans les neurones sensoriels primaires afférents du rat adulte pour clarifier le rôle des ASICs dans les neurones sensoriels. Nous avons caractérisé leurs propriétés biophysiques et pharmacologiques par la technique du patch-clamp en configuration « whole-cell ». Nous avons pu démontrer que près de 60% des neurones sensoriels de petit diamètre expriment des courants ASICs. Nous avons mis en évidence trois types de courant ASIC dans ces neurones. Les types 1 et 3 ont des propriétés compatibles avec un rôle de senseur du pH alors que le type 2 est majoritairement activé par des pH inférieurs à pH6. Le type 1 est médié par des homomers de la sous-unité ASIC1 a qui sont perméables aux Ca2+. Nous avons étudié leur co-expression avec des marqueurs des nocicepteurs ainsi que la possibilité d'induire une activité neuronale suite à une acidification qui soit dépendante des ASICs. Le but était d'associer un type de courant ASIC avec une fonction potentielle dans les neurones sensoriels. Une majorité des neurones exprimant les courants ASIC co-expriment des marqueurs des nocicepteurs. Toutefois, une plus grande proportion des neurones exprimant le type 1 n'est pas associée à la nociception par rapport aux types 2 et 3. Nous avons montré qu'il est possible d'induire des potentiels d'actions suite à une acidification. La probabilité d'induction est proportionnelle à la densité des courants ASIC et à l'acidité de la stimulation. Puis, nous avons utilisé cette classification comme un outil pour appréhender les potentielles modulations fonctionnelles des ASICs dans un model de neuropathie (spared nerve injury). Cette approche fut complétée par des expériences de «quantitative RT-PCR ». En situation de neuropathie, les courants ASIC sont dramatiquement changés au niveau de leur expression fonctionnelle et transcriptionnelle dans les neurones lésés ainsi que non-lésés. Dans une deuxième partie de ma thèse, suite au test de différentes substances sécrétées lors de l'inflammation et l'ischémie sur les propriétés des ASICs, nous avons caractérisé en détail la modulation des propriétés des courants ASICs notamment ASIC1 par les sérines protéases dans des systèmes d'expression recombinants ainsi que dans des neurones d'hippocampe. Nous avons montré que l'exposition aux sérine-protéases décale la dépendance au pH de l'activation ainsi que la « steady-state inactivation »des ASICs -1a et -1b vers des valeurs plus acidiques. Ainsi, l'exposition aux serine protéases conduit à une diminution du courant quand l'acidification a lieu à partir d'un pH7.4 et conduit à une augmentation du courant quand l'acidification alleu à partir d'un pH7. Nous avons aussi montré que cette régulation a lieu des les neurones d'hippocampe. Nos résultats dans les neurones sensoriels suggèrent que certains courants ASICs sont impliqués dans la transduction de l'acidification et de la douleur ainsi que dans une des phases du processus conduisant à la neuropathie. Une partie des courants de type 1 perméables au Ca 2+ peuvent être impliqués dans la neurosécrétion. La modulation par les sérines protéases pourrait expliquer qu'en situation d'acidose les canaux ASICs soient toujours activables. Résumé grand publique Les neurones sont les principales cellules du système nerveux. Le système nerveux est formé par le système nerveux central - principalement le cerveau, le cervelet et la moelle épinière - et le système nerveux périphérique -principalement les nerfs et les neurones sensoriels. Grâce à leur nombreux "bras" (les neurites), les neurones sont connectés entre eux, formant un véritable réseau de communication qui s'étend dans tout le corps. L'information se propage sous forme d'un phénomène électrique, l'influx nerveux (ou potentiels d'actions). A la base des phénomènes électriques dans les neurones il y a ce que l'on appelle les canaux ioniques. Un canal ionique est une sorte de tunnel qui traverse l'enveloppe qui entoure les cellules (la membrane) et par lequel passent les ions. La plupart de ces canaux sont normalement fermés et nécessitent d'être activés pour s'ouvrire et générer un influx nerveux. Les canaux ASICs sont activés par l'acidification et sont exprimés dans tout le système nerveux. Cette acidification a lieu notamment lors d'une attaque cérébrale (ischémie cérébrale) ou lors de l'inflammation. Les expériences sur les animaux ont montré que les canaux ASICs avaient entre autre un rôle dans la mort des neurones lors d'une attaque cérébrale et dans la douleur inflammatoire. Lors de ma thèse je me suis intéressé au rôle des ASICs dans la douleur et à l'influence des substances produites pendant l'inflammation sur leur activation par l'acidification. J'ai ainsi pu montrer chez le rat que la majorité des neurones sensoriels impliqués dans la douleur ont des canaux ASICs et que l'activation de ces canaux induit des potentiels d'action. Nous avons opéré des rats pour qu'ils présentent les symptômes d'une maladie chronique appelée neuropathie. La neuropathie se caractérise par une plus grande sensibilité à la douleur. Les rats neuropathiques présentent des changements de leurs canaux ASICs suggérant que ces canaux ont une peut-être un rôle dans la genèse ou les symptômes de cette maladie. J'ai aussi montré in vitro qu'un type d'enryme produit lors de l'inflammation et l'ischémie change les propriétés des ASICs. Ces résultats confirment un rôle des ASICs dans la douleur suggérant notamment un rôle jusque là encore non étudié dans la douleur neuropathique. De plus, ces résultats mettent en évidence une régulation des ASICs qui pourrait être importante si elle se confirmait in vivo de part les différents rôles des ASICs. Abstract Acid-sensing ion channels (ASICs) are members of the ENaC/Degenerin superfamily of ion channels. Their activation by a rapid extracellular acidification generates a transient and for some ASIC types also a sustained current mainly mediated by Na+. ASICs are expressed in the central (CNS) and in the peripheral (PNS) nervous system. In the CNS, ASICs have a putative role in learning, memory and in neuronal death after cerebral ischemia. In the PNS, ASICs have a putative role in nociception (acute and inflammatory pain) and in mechanotransduction. However, studies on ASIC function are somewhat controversial. Some studies suggest a crucial role of ASICs in transduction of acidification and in pain whereas other studies suggest rather a modulatory inhibitory role of ASICs in pain. Moreover, the basic property of ASICs, that they are activated only transiently is irreconcilable with the well-known property of nociception that the firing of nociceptive fibers demonstrated very little adaptation. Endogenous molecules may exist that can modulate ASIC properties. In a first part of my thesis, we addressed the question of the functional expression of ASICs in adult rat dorsal root ganglion (DRG) neurons. Our goal was to elucidate ASIC roles in DRG neurons. We characterized biophysical and pharmacological properties of ASIC currents using the patch-clamp technique in the whole-cell configuration. We observed that around 60% of small-diameter sensory neurons express ASICs currents. We described in these neurons three ASIC current types. Types 1 and 3 have properties compatible with a role of pH-sensor whereas type 2 is mainly activated by pH lower than pH6. Type 1 is mediated by ASIC1a homomultimers which are permeable to Ca 2+. We studied ASIC co-expression with nociceptor markers. The goal was to associate an ASIC current type with a potential function in sensory neurons. Most neurons expressing ASIC currents co-expressed nociceptor markers. However, a higher proportion of the neurons expressing type 1 was not associated with nociception compared to type 2 and -3. We completed this approach with current-clamp measurements of acidification-induced action potentials (APs). We showed that activation of ASICs in small-diameter neurons can induce APs. The probability of AP induction is positively correlated with the ASIC current density and the acidity of stimulation. Then, we used this classification as a tool to characterize the potential functional modulation of ASICs in the spared nerve injury model of neuropathy. This approach was completed by quantitative RT-PCR experiments. ASICs current expression was dramatically changed at the functional and transcriptional level in injured and non-injured small-diameter DRG neurons. In a second part of my thesis, following an initial screening of the effect of various substances secreted during inflammation and ischemia on ASIC current properties, we characterized in detail the modulation of ASICs, in particular of ASIC1 by serine proteases in a recombinant expression system as well as in hippocampal neurons. We showed that protease exposure shifts the pH dependence of ASIC1 activation and steady-state inactivation to more acidic pH. As a consequence, protease exposure leads to a decrease in the current response if ASIC1 is activated by a pH drop from pH 7.4. If, however, acidification occurs from a basal pH of 7, protease-exposed ASIC1a shows higher activity than untreated ASIC1a. We provided evidence that this bi-directional regulation of ASIC1a function also occurs in hippocampal neurons. Our results in DRG neurons suggest that some ASIC currents are involved in the transduction of peripheral acidification and pain. Furthermore, ASICs may participate to the processes leading to neuropathy. Some Ca 2+-permeable type 1 currents may be involved in neurosecretion. ASIC modulation by serine proteases may be physiologically relevant, allowing ASIC activation under sustained slightly acidic conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: To asses the clinical profile, treatment outcome and prognostic factors in primary breast lymphoma (PBL). METHODS: Between 1970 and 2000, 84 consecutive patients with PBL were treated in 20 institutions of the Rare Cancer Network. Forty-six patients had Ann Arbor stage IE, 33 stage IIE, 1 stage IIIE, 2 stage IVE and 2 an unknown stage. Twenty-one underwent a mastectomy, 39 conservative surgery and 23 biopsy; 51 received radiotherapy (RT) with (n = 37) or without (n = 14) chemotherapy. Median RT dose was 40 Gy (range 12-55 Gy). RESULTS: Ten (12%) patients progressed locally and 43 (55%) had a systemic relapse. Central nervous system (CNS) was the site of relapse in 12 (14%) cases. The 5-yr overall survival, lymphoma-specific survival, disease-free survival and local control rates were 53%, 59%, 41% and 87% respectively. In the univariate analyses, favorable prognostic factors were early stage, conservative surgery, RT administration and combined modality treatment. Multivariate analysis showed that early stage and the use of RT were favorable prognostic factors. CONCLUSION: The outcome of PBL is fair. Local control is excellent with RT or combined modality treatment but systemic relapses, including that in the CNS, occurs frequently.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: The aim of the current study was to investigate the biomechanical stability and fixation strength provided by a posterior approach reconstruction technique to realign the craniovertebral junction.¦METHODS: We tested seven human cadaver occipito-cervical spines (occiput-C4) by applying pure moments of ±1.5 Nm on a spine tester. Each specimen was tested in the following modes: 1) intact; 2) injured; 3) spacers alone at C1-C2 articulation (S); 4) spacers plus C1-C2 Posterior Instrumentation (S+PI); and 5) spacers plus C1-C2 posterior instrumentation plus midline wiring (S+PI+MLW). C1-C2 range of motion for each construct was obtained in flexion-extension, lateral bending, and axial rotation.¦RESULTS: In all the loading modes, S, S+PI, and S+PI+MLW constructs significantly reduced range of motion compared with the intact and injured condition (P < 0.05). There was no statistical difference between any of the three instrumentation constructs (P > 0.05).¦CONCLUSIONS: This study investigated the biomechanics of the posterior approach technique for realignment of the craniovertebral junction and also made comparisons with additional posterior fixations. The stand-alone spacers were stable in all three loading modes. Posterior instrumentation increased the stability as compared to stand-alone spacers. The third point of fixation, carried out by using midline wiring, increased the stability further. However, there was not much difference in the stability imparted with the midline wiring versus without. The present study highlights the biomechanics of this novel concept and reaffirms the view that distraction of the C1-C2 articular facets and direct articular joint atlantoaxial fixation would be an ideal method of management of basilar invagination.