982 resultados para Classification rules
Resumo:
We investigate the relevance of morphological operators for the classification of land use in urban scenes using submetric panchromatic imagery. A support vector machine is used for the classification. Six types of filters have been employed: opening and closing, opening and closing by reconstruction, and opening and closing top hat. The type and scale of the filters are discussed, and a feature selection algorithm called recursive feature elimination is applied to decrease the dimensionality of the input data. The analysis performed on two QuickBird panchromatic images showed that simple opening and closing operators are the most relevant for classification at such a high spatial resolution. Moreover, mixed sets combining simple and reconstruction filters provided the best performance. Tests performed on both images, having areas characterized by different architectural styles, yielded similar results for both feature selection and classification accuracy, suggesting the generalization of the feature sets highlighted.
Resumo:
OBJECTIVE: To assess whether Jass staging enhances prognostic prediction in Dukes' B colorectal carcinoma. DESIGN: A historical cohort observational study. SETTING: A university tertiary care centre, Switzerland. SUBJECTS: 108 consecutive patients. INTERVENTIONS: Curative resection of Dukes' B colorectal carcinoma between January 1985 and December 1988, Patients with familial adenomatous polyposis; hereditary non-polyposis colorectal cancer; Crohns' disease; ulcerative colitis and synchronous and recurrent tumours were excluded. A comparable group of 155 consecutive patients with Dukes' C carcinoma were included for reference purposes. MAIN OUTCOME MEASURES: Disease free and overall survival for Dukes' B and overall survival for Dukes' C tumours. RESULTS: Dukes' B tumours in Jass group III or with an infiltrated margin had a significantly worse disease-free survival (p = 0.001 and 0.0001, respectively) and those with infiltrated margins had a significantly worse overall survival (p = 0.002). Overall survival among those with Dukes' B Jass III and Dukes' B with infiltrated margins was no better than overall survival among all patients with Dukes' C tumours. CONCLUSION: Jass staging and the nature of the margin of invasion allow patients undergoing curative surgery for Dukes' B colorectal carcinoma to be separated into prognostic groups. A group of patients with Dukes' B tumours whose prognosis is inseparable from those with Dukes' C tumours can be identified, the nature of the margin of invasion being used to classify a larger number of patients.
Resumo:
A table showing a comparison and classification of tools (intelligent tutoring systems) for e-learning of Logic at a college level.
Resumo:
In order to understand the development of non-genetically encoded actions during an animal's lifespan, it is necessary to analyze the dynamics and evolution of learning rules producing behavior. Owing to the intrinsic stochastic and frequency-dependent nature of learning dynamics, these rules are often studied in evolutionary biology via agent-based computer simulations. In this paper, we show that stochastic approximation theory can help to qualitatively understand learning dynamics and formulate analytical models for the evolution of learning rules. We consider a population of individuals repeatedly interacting during their lifespan, and where the stage game faced by the individuals fluctuates according to an environmental stochastic process. Individuals adjust their behavioral actions according to learning rules belonging to the class of experience-weighted attraction learning mechanisms, which includes standard reinforcement and Bayesian learning as special cases. We use stochastic approximation theory in order to derive differential equations governing action play probabilities, which turn out to have qualitative features of mutator-selection equations. We then perform agent-based simulations to find the conditions where the deterministic approximation is closest to the original stochastic learning process for standard 2-action 2-player fluctuating games, where interaction between learning rules and preference reversal may occur. Finally, we analyze a simplified model for the evolution of learning in a producer-scrounger game, which shows that the exploration rate can interact in a non-intuitive way with other features of co-evolving learning rules. Overall, our analyses illustrate the usefulness of applying stochastic approximation theory in the study of animal learning.
Resumo:
This letter presents advanced classification methods for very high resolution images. Efficient multisource information, both spectral and spatial, is exploited through the use of composite kernels in support vector machines. Weighted summations of kernels accounting for separate sources of spectral and spatial information are analyzed and compared to classical approaches such as pure spectral classification or stacked approaches using all the features in a single vector. Model selection problems are addressed, as well as the importance of the different kernels in the weighted summation.
Resumo:
The glasses of the rosette forming the main window of the transept of the Gothic Cathedral of Tarragona have been characterised by means of SEM/EDS, XRD, FTIR and electronic microprobe. The multivariate statistical treatment of these data allow to establish a classification of the samples forming groups having an historical significance and reflecting ancient restorations. Furthermore, the decay patterns and mechanisms have been determined and the weathering by-products characterised. It has been demonstrated a clear influence of the bioactivity in the decay of these glasses, which activity is partially controlled by the chemical composition of the glasses.
Resumo:
The glasses of the rosette forming the main window of the transept of the Gothic Cathedral of Tarragona have been characterised by means of SEM/EDS, XRD, FTIR and electronic microprobe. The multivariate statistical treatment of these data allow to establish a classification of the samples forming groups having an historical significance and reflecting ancient restorations. Furthermore, the decay patterns and mechanisms have been determined and the weathering by-products characterised. It has been demonstrated a clear influence of the bioactivity in the decay of these glasses, which activity is partially controlled by the chemical composition of the glasses.
Resumo:
Eighty-Sixth General Assembly Joint Rules of the House and Senate (House Concurrent Resolution 6), House adopted 2-3-2015, Senate adopted 2-4-2015
Resumo:
Eighty-Sixth General Assembly House Rules (House Resolution 4-Adopted 2-3-2015)
Resumo:
Eighty-Sixth General Assembly Joint Rules Governing Lobbyists (House Concurrent Resolution 7) House Adopted 2-3-2015, Senate Adopted 2-4-2015
Resumo:
Eighty-Sixth General Assembly House Rules (House Resolution 4-Adopted 2-3-2015)
Resumo:
The objective of this work was to assess and characterize two clones, 169 and 685, of Cabernet Sauvignon grapes and to evaluate the wine produced from these grapes. The experiment was carried out in São Joaquim, SC, Brazil, during the 2009 harvest season. During grape ripening, the evolution of physical-chemical properties, phenolic compounds, organic acids, and anthocyanins was evaluated. During grape harvest, yield components were determined for each clone. Individual and total phenolics, individual and total anthocyanins, and antioxidant activity were evaluated for wine. The clones were also assessed regarding the duration of their phenological cycle. During ripening, the evolution of phenolic compounds and of physical-chemical parameters was similar for both clones; however, during harvest, significant differences were observed regarding yield, number of bunches per plant and berries per bunch, leaf area, and organic acid, polyphenol, and anthocyanin content. The wines produced from these clones showed significant differences regarding chemical composition. The clones showed similar phenological cycle and responses to bioclimatic parameters. Principal component analysis shows that clone 685 is strongly correlated with color characteristics, mainly monomeric anthocyanins, while clone 169 is correlated with individual phenolic compounds.
Resumo:
This paper presents a validation study on statistical nonsupervised brain tissue classification techniques in magnetic resonance (MR) images. Several image models assuming different hypotheses regarding the intensity distribution model, the spatial model and the number of classes are assessed. The methods are tested on simulated data for which the classification ground truth is known. Different noise and intensity nonuniformities are added to simulate real imaging conditions. No enhancement of the image quality is considered either before or during the classification process. This way, the accuracy of the methods and their robustness against image artifacts are tested. Classification is also performed on real data where a quantitative validation compares the methods' results with an estimated ground truth from manual segmentations by experts. Validity of the various classification methods in the labeling of the image as well as in the tissue volume is estimated with different local and global measures. Results demonstrate that methods relying on both intensity and spatial information are more robust to noise and field inhomogeneities. We also demonstrate that partial volume is not perfectly modeled, even though methods that account for mixture classes outperform methods that only consider pure Gaussian classes. Finally, we show that simulated data results can also be extended to real data.
Resumo:
In this work, a new one-class classification ensemble strategy called approximate polytope ensemble is presented. The main contribution of the paper is threefold. First, the geometrical concept of convex hull is used to define the boundary of the target class defining the problem. Expansions and contractions of this geometrical structure are introduced in order to avoid over-fitting. Second, the decision whether a point belongs to the convex hull model in high dimensional spaces is approximated by means of random projections and an ensemble decision process. Finally, a tiling strategy is proposed in order to model non-convex structures. Experimental results show that the proposed strategy is significantly better than state of the art one-class classification methods on over 200 datasets.
Resumo:
In this paper, mixed spectral-structural kernel machines are proposed for the classification of very-high resolution images. The simultaneous use of multispectral and structural features (computed using morphological filters) allows a significant increase in classification accuracy of remote sensing images. Subsequently, weighted summation kernel support vector machines are proposed and applied in order to take into account the multiscale nature of the scene considered. Such classifiers use the Mercer property of kernel matrices to compute a new kernel matrix accounting simultaneously for two scale parameters. Tests on a Zurich QuickBird image show the relevance of the proposed method : using the mixed spectral-structural features, the classification accuracy increases of about 5%, achieving a Kappa index of 0.97. The multikernel approach proposed provide an overall accuracy of 98.90% with related Kappa index of 0.985.