907 resultados para Circular shortest path


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhythmic and discrete arm movements occur ubiquitously in everyday life, and there is a debate as to whether these two classes of movements arise from the same or different underlying neural mechanisms. Here we examine interference in a motor-learning paradigm to test whether rhythmic and discrete movements employ at least partially separate neural representations. Subjects were required to make circular movements of their right hand while they were exposed to a velocity-dependent force field that perturbed the circularity of the movement path. The direction of the force-field perturbation reversed at the end of each block of 20 revolutions. When subjects made only rhythmic or only discrete circular movements, interference was observed when switching between the two opposing force fields. However, when subjects alternated between blocks of rhythmic and discrete movements, such that each was uniquely associated with one of the perturbation directions, interference was significantly reduced. Only in this case did subjects learn to corepresent the two opposing perturbations, suggesting that different neural resources were employed for the two movement types. Our results provide further evidence that rhythmic and discrete movements employ at least partially separate control mechanisms in the motor system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multimode sound radiation from an unflanged, semi-infinite, rigid-walled circular duct with uniform subsonic mean flow everywhere is investigated theoretically. The multimode directivity depends on the amplitude and directivity function of each individual cut-on mode. The amplitude of each mode is expressed as a function of cut-on ratio for a uniform distribution of incoherent monopoles, a uniform distribution of incoherent axial dipoles, and for equal power per mode. The directivity function of each mode is obtained by applying a Lorentz transformation to the zero-flow directivity function, which is given by a Wiener-Hopf solution. This exact numerical result is compared to an analytic solution, valid in the high-frequency limit, for multimode directivity with uniform flow. The high-frequency asymptotic solution is derived assuming total transmission of power at the open end of the duct, and gives the multimode directivity function with flow in the forward arc for a general family of mode amplitude distribution functions. At high frequencies the agreement between the exact and asymptotic solutions is shown to be excellent.