900 resultados para Central nervous system.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growing exposure to chemicals in our environment and the increasing concern over their impact on health have elevated the need for new methods for surveying the detrimental effects of these compounds. Today's gold standard for assessing the effects of toxicants on the brain is based on hematoxylin and eosin (H&E)-stained histology, sometimes accompanied by special stains or immunohistochemistry for neural processes and myelin. This approach is time-consuming and is usually limited to a fraction of the total brain volume. We demonstrate that magnetic resonance histology (MRH) can be used for quantitatively assessing the effects of central nervous system toxicants in rat models. We show that subtle and sparse changes to brain structure can be detected using magnetic resonance histology, and correspond to some of the locations in which lesions are found by traditional pathological examination. We report for the first time diffusion tensor image-based detection of changes in white matter regions, including fimbria and corpus callosum, in the brains of rats exposed to 8 mg/kg and 12 mg/kg trimethyltin. Besides detecting brain-wide changes, magnetic resonance histology provides a quantitative assessment of dose-dependent effects. These effects can be found in different magnetic resonance contrast mechanisms, providing multivariate biomarkers for the same spatial location. In this study, deformation-based morphometry detected areas where previous studies have detected cell loss, while voxel-wise analyses of diffusion tensor parameters revealed microstructural changes due to such things as cellular swelling, apoptosis, and inflammation. Magnetic resonance histology brings a valuable addition to pathology with the ability to generate brain-wide quantitative parametric maps for markers of toxic insults in the rodent brain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinoic acids (13-cis and 13-trans) are known teratogens, and their precursor is retinol, a form of vitamin A. In 1995, Rothman et al demonstrated an association between excessive vitamin A, >10,000 IU/day, during the first trimester of pregnancy and teratogenic effects, particularly in the central nervous system. However, vitamin A deficiency has long been known to be deleterious to the mother and fetus. Therefore, there may be a narrow therapeutic ratio for vitamin A during pregnancy that has not previously been fully appreciated. Neurodevelopmental disorders may not be apparent by macroscopic brain examination or imaging, and proving the existence of a behavioral teratogen is not straightforward. However, an excess of retinoic acid and some neurodevelopmental disorders are both associated with abnormalities in cerebellar morphology. Physical and chemical evidence strongly supports the notion that beta carotene crosses the placenta and is metabolized to retinol. Only very limited amounts of beta carotene are stored in fetal fat cells as evidenced by the fact that maternal fat is yellow from beta carotene, whereas non-brown neonatal fat is white. Furthermore, newborns of carotenemic mothers do not share the yellow complexion of their mothers. The excess 13-trans retinoic acid derived from metabolized beta carotene in the fetus increases the concentration of the more teratogenic 13-cis retinoic acid since the isomerization equilibrium is shifted to the left. Therefore, this paper proposes that consideration be given to monitoring all potential sources of fetal 13-cis and 13-trans retinoic acid, including nutritional supplements, dietary retinol, and beta carotene, particularly in the first trimester of pregnancy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Opioids are efficacious and cost-effective analgesics, but tolerance limits their effectiveness. This paper does not present any new clinical or experimental data but demonstrates that there exist ascending sensory pathways that contain few opioid receptors. These pathways are located by brain PET scans and spinal cord autoradiography. These nonopioid ascending pathways include portions of the ventral spinal thalamic tract originating in Rexed layers VI-VIII, thalamocortical fibers that project to the primary somatosensory cortex (S1), and possibly a midline dorsal column visceral pathway. One hypothesis is that opioid tolerance and opioid-induced hyperalgesia may be caused by homeostatic upregulation during opioid exposure of nonopioid-dependent ascending pain pathways. Upregulation of sensory pathways is not a new concept and has been demonstrated in individuals impaired with deafness or blindness. A second hypothesis is that adjuvant nonopioid therapies may inhibit ascending nonopioid-dependent pathways and support the clinical observations that monotherapy with opioids usually fails. The uniqueness of opioid tolerance compared to tolerance associated with other central nervous system medications and lack of tolerance from excess hormone production is discussed. Experimental work that could prove or disprove the concepts as well as flaws in the concepts is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dopamine is an important central nervous system transmitter that functions through two classes of receptors (D1 and D2) to influence a diverse range of biological processes in vertebrates. With roles in regulating neural activity, behavior, and gene expression, there has been great interest in understanding the function and evolution dopamine and its receptors. In this study, we use a combination of sequence analyses, microsynteny analyses, and phylogenetic relationships to identify and characterize both the D1 (DRD1A, DRD1B, DRD1C, and DRD1E) and D2 (DRD2, DRD3, and DRD4) dopamine receptor gene families in 43 recently sequenced bird genomes representing the major ordinal lineages across the avian family tree. We show that the common ancestor of all birds possessed at least seven D1 and D2 receptors, followed by subsequent independent losses in some lineages of modern birds. Through comparisons with other vertebrate and invertebrate species we show that two of the D1 receptors, DRD1A and DRD1B, and two of the D2 receptors, DRD2 and DRD3, originated from a whole genome duplication event early in the vertebrate lineage, providing the first conclusive evidence of the origin of these highly conserved receptors. Our findings provide insight into the evolutionary development of an important modulatory component of the central nervous system in vertebrates, and will help further unravel the complex evolutionary and functional relationships among dopamine receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies from this laboratory have shown that CNS myelin is phagocytized and metabolized by cultured rat macrophages to a much larger extent when myelin is pretreated with serum containing antibodies to myelin constituents than when it is left untreated or pretreated with non-specific serum. In this study the effect of cerebrospinal fluid (CSF) from rabbits with experimental allergic encephalomyelitis (EAE) in promoting myelin phagocytosis was examined. Fourteen rabbits were immunized with purified myelin in Freund's complete adjuvant, seven of which developed clinical EAE symptoms. Serum and CSF were collected from EAE and control rabbits, and the CSF was centrifuged to remove cells. Sera and CSF from these rabbits and from Freund's adjuvant-immunized controls and untreated controls were measured for IgG content by radial diffusion assay, their myelin antibody characteristics were analyzed by immunoblots, and the ability of these serum and CSF samples to promote myelin phagocytosis when used for myelin opsonization was examined. The ability of a CSF sample to enhance radioactive myelin uptake and phagocytosis by cultured macrophages as measured by the appearance of radioactive cholesterol ester was linearly proportional to its total IgG titer, and correlated approximately both with clinical symptoms of the animal and the presence of antibody against the myelin constituents myelin basic protein, proteolipid protein, and galactocerebroside. The cholesterol esterification activities of EAE sera correlated to a lesser extent with IgG levels and clinical symptoms.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental allergic encephalomyelitis is characterized by invasion of lymphocytes and macrophages into the central nervous system resulting in inflammation, edema, and demyelination. Sera from Lewis rats from 7-95 days after immunization with purified guinea pig CNS myelin were examined with respect to their ability to opsonize myelin. This was correlated with the appearance of antibody components and the relative amounts of antibody to myelin basic protein (MBP) and proteolipid protein (PLP). Sera from rats 10-95 days after immunization preincubated with purified myelin induced phagocytosis of myelin by cultured macrophages with the resulting production of cholesterol ester. This opsonization activity as measured by the percentage of cholesterol esterified reached a peak at 26-27 days after immunization but remained significantly elevated up to 95 days post-immunization compared to the activity of serum from the Freund's adjuvant-injected controls. Immunoblots of the sera revealed a gradual increase in antibody activity against myelin components. ELISA assays for MBP and PLP antibody showed a similar pattern. Antibody to galactocerebroside (GC) was not detected by immunostains nor by the ELISA assay. Areas of demyelination were observed histologically by luxol-fast blue stained spinal cords up to 60 days post-immunization. These results indicate that antibodies to myelin protein when given access to myelin through or within the blood brain barrier could initiate or enhance the phagocytic response by peripheral or resident macrophages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The X-ray crystal structures of two crystalline forms of 5-(2,3,5-trichlorophenyl)-2,4-diaminopyrimidine, C10H7Cl3N4 (code name BW1003C87) (I) and (II), have been carried out at liquid nitrogen temperature. A detailed comparison of the two structures is given. Both are centrosymmetric, with structure (I) in the triclinic space group P (1) over bar unit cell a = 6.4870(10), b = 9.216(2), c = 12.016(2) angstrom, alpha = 75.78(3)degrees, beta = 89.95(3)degrees, gamma = 83.45(3)degrees, V = 691.5(2) angstrom(3), Z = 2 and density (calculated) = 1.544 Mg/m(3); and (II) in the monoclinic space group P2(1)/c, unit cell a = 12.000(2), b = 7.518(2), c = 13.450(3) angstrom, beta = 97.87(3)degrees, V = 1202.0(5) angstrom(3), Z = 4, Density (calculated) = 1.600 Mg/m(3). Structure (I) includes a solvated CH3OH in the lattice. Final R indices [I > 2sigma(I)] are R1 = 0.0427, wR2 = 0.1075 for (I) and R1 = 0.0487, wR2 = 0.1222 for (II). R indices (all data) are R1 = 0.0470, wR2 = 0.1118 for (I) and R1 = 0.0623, wR2 = 0.1299 for (II). 5-Phenyl-2,4 diaminopyrimidine and 6-phenyl-1,2,4 triazine derivatives, which include lamotrigine (3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazine), have been investigated for some time for their effects on the central nervous system. Both lamotrigine and 5-(2,3,5-trichlorophenyl)-2,4-diaminopyrimidine (code name BW1003C87), the subject of the present study, are anticonvulsant as well as neuroprotective in models of brain ischaemia and in a model of white matter ischaemia. BW1003C87 is a sodium channel blocker which also reduces the release of the neurotransmitter glutamate. The three dimensional structures reported here form part of a newly developed data base for the detailed investigation of members of this drug family and their biological activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drugs based on 5-phenyl-2,4 diamino pyrimidine and 6-phenyl-1,2,4 triazine derivatives are well known for their effects on the central nervous system. The study presented here provides detailed crystal structures of two pyrimidine derivatives which have neuroprotective properties in models of both grey and white matter ischemia. Recently published studies suggest that the compounds lamotrigine (a triazine derivative), and the two pyrimidines BW1003C87 (I) and sipatrigine (II) mediate their primary in vivo mode of action by inhibiting voltage-gated Na+ channels. The X-ray crystal structures will contribute valuable data for applications involving binding and modelling studies of the biological actions of these drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mural cells (smooth muscle cells and pericytes) regulate blood flow and contribute to vessel stability. We examined whether mural cell changes accompany age-related alterations in the microvasculature of the central nervous system. The retinas of young adult and aged Wistar rats were subjected to immunohistofluorescence analysis of a-smooth muscle actin (SMA), caldesmon, calponin, desmin, and NG2 to identify mural cells. The vasculature was visualized by lectin histochemistry or perfusion of horse-radish peroxidase, and vessel walls were examined by electron microscopy. The early stage of aging was characterized by changes in peripheral retinal capillaries, including vessel broadening, thickening of the basement membrane, an altered length and orientation of desmin filaments in pericytes, a more widespread SMA distribution and changes in a subset of pre-arteriolar sphincters. In the later stages of aging, loss of capillary patency, aneurysms, distorted vessels, and foci of angiogenesis were apparent, especially in the peripheral deep vascular plexus. The capillary changes are consistent with impaired vascular autoregulation and may result in reduced pericyte-endothelial cell contact, destabilizing the capillaries and rendering them susceptible to angiogenic stimuli and endothelial cell loss as well as impairing the exchange of metabolites required for optimal neuronal function. This metabolic uncoupling leads to reactivation of

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anillin is an actin-binding protein that can bind septins and is a component of the cytokinetic ring. We assessed the anillin expression in 7,579 human tissue samples and cell lines by DNA micro-array analysis. Anillin is expressed ubiquitously but with variable levels of expression, being highest in the central nervous system. The median level of anillin mRNA expression was higher in tumors than normal tissues (median fold increase 2.58; 95% confidence intervals, 2.19-5.68, P < 0.0001) except in the central nervous system where anillin in RNA levels were lower in tumors. We developed a sensitive reverse transcription-PCR strategy to show that anillin mRNA is expressed in cell lines and in cDNA panels derived from fetal and adult tissues, thus validating the microarray data. We compared anillin with Ki67 in RNA expression and found a significant linear relationship between anillin and Ki67 mRNA expression (Spearmann r similar to 0.6, P < 0.0001). Anillin mRNA expression was analyzed during tumor progression in breast, ovarian, kidney, colorectal, hepatic, lung, endometrial, and pancreatic tumors and in all tissues there was progressive, increase in anillin mRNA expression from normal to benign to malignant to metastatic disease. Finally, we used anti-anillin sera and found nuclear anillin immuncireactivity to be widespread in normal tissues, often not correlating with proliferative compartments. These data provide insight into the existence of non proliferation-associated activities of anillin and roles in interphase nuclei. Thus, anillin is overexpressed in diverse common human tumors, but not simply as a consequence of being a proliferation marker. Anillin may have potential as a novel biomarker.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monocytes can differentiate into dendritic cells (DC), cells with a pivotal role in both protective immunity and tolerance. Defects in the maturation or function of DC may be important in the development of autoimmune disease. We sought to establish if there were differences in the cytokine (granulocyte-macrophage colony-stimulating factor and IL-4)-driven maturation of monocytes to DC in patients with MS and whether drugs used to treat MS affected this process in vitro. We have demonstrated that there is no defect in the ability of magnetic activated cell sorting (MACS)-purified monocytes from patients with MS to differentiate to DC, but equally they show no tendency to acquire a DC phenotype without exogenous cytokines. Interferon-beta1a prevents the acquisition of a full DC phenotype as determined by light and electron microscopy and by flow cytometry. Methylprednisolone not only prevents the development of monocyte-derived DC but totally redirects monocyte differentiation towards a macrophage phenotype. Evidence is evolving for a role for DC in central nervous system immunity, either within the brain or in cervical lymph nodes. The demonstrated effect of both drugs on monocyte differentiation may represent an important site for immune therapy in MS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Confocal microscopy interfaced with cytochemical procedures has been used to monitor development of the major muscle systems and associated serotoninergic (5-HT, 5-hydroxytryptamine) and peptidergic (FaRP, FMRFamide-related peptide) innervation of the strigeid trematodes, Apatemon cobitidis proterorhini and Cotylurus erraticus during cultivation in vitro. Sexually undifferentiated metacercariae were successfully grown to ovigerous adults using tissue culture medium NCTC 135, chicken serum and egg albumen. Eggs were produced after 5 days in culture but had abnormal shells and failed to embryonate. 5-HT and FaRP (the flatworm FaRP, GYIRFamide) were localised immunocytochemically in both central and peripheral nervous systems of developing worms. During cultivation, the central serotoninergic and FaRPergic neuronal pathways of the forebody became more extensive, but retained the same basic orthogonal arrangement as found in the excysted metacercaria. Longitudinal extensor and flexor muscles of the hindbody provide support for the developing reproductive complex. The male reproductive tracts were established in advance (day 3) of those of the female system (day 4); completion of the latter was marked by the appearance of the ootype/egg chamber. The inner longitudinal muscle fibres of the female tract appeared prior to the outer and more densely arranged circular muscles. Circular fibres dominate the muscle complement of both alimentary and reproductive tracts. 5-HT- and GYIRFamide-immunoreactivities were demonstrable in the central nervous system (CNS) and subtegumental parasympathetic nervous system (PNS) throughout the culture period, but innervation of the developing reproductive structures was reactive just for 5-HT. Only at the onset of egg production was FaRP-IR observed in the reproductive system and was expressed only in the innervation of the ootype, a finding consistent with the view that FaRPs may regulate egg assembly in platyhelminths.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The major muscle systems of the metacercaria of the strigeid trematode, Apatemon cobitidis proterorhini have been examined using phalloidin as a site-specific probe for filamentous actin. Regional differences were evident in the organization of the body wall musculature of the forebody and hindbody, the former comprising outer circular, intermediate longitudinal and inner diagonal fibres, the latter having the inner diagonal fibres replaced with an extra layer of more widely spaced circular muscle. Three orientations of muscle fibres (equatorial, meridional, radial) were discernible in the oral sucker, acetabulum and paired lappets. Large longitudinal extensor and flexor muscles project into the hindbody where they connect to the body wall or end blindly. Innervation to the muscle systems of Apatemon was examined by immunocytochemistry, using antibodies to known myoactive substances: the flatworm FMRFamide-related neuropeptide (FaRP), GYIRFamide, and the biogenic amine, 5-hydroxytryptamine (5-HT). Strong immunostaining for both peptidergic and serotoninergic components was found in the central nervous system and confocal microscopic mapping of the distribution of these neuroactive substances revealed they occupied separate neuronal pathways. In the peripheral nervous system, GYIRFamide-immunoreactivity was extensive and, in particular, associated with the innervation of all attachment structures; serotoninergic fibres, on the other hand, were localized to the oral sucker and pharynx and to regions along the anterior margins of the forebody.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cholinergic, serotoninergic and neuropeptidergic components of the nervous system were examined and compared in the progenetic metacercaria and adult gasterostome trematode, Bucephaloides gracilescens in order to provide baseline information on neuronal control of the musculature involved in egg-assembly. Enzyme cytochemistry and indirect immunocytochemical techniques interfaced with confocal scanning laser microscopy demonstrated all three classes of neuroactive substance throughout the central and peripheral nervous systems. A comparable orthogonal arrangement of the central nervous system (CNS) and peripheral array of nerve plexuses was observed in both metacercaria and adult. Staining patterns for cholinergic and peptidergic substances showed significant overlap, while the serotoninergic system was confined to a separate set of neurons. Immunostaining for FMRFamide-related peptides (FaRPs) was strong in the CNS and peripheral innervation to the attachment apparatus of metacercaria and adult but was only found in the innervation of the ootype in ovigerous adults, implicating FaRPs in neuronal control of the muscle of the female reproductive tract during egg-assembly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Platyhelminthes occupy a unique position in nerve-muscle evolution, being the most primitive of metazoan phyla. Essentially, their nervous system consists of an archaic brain and associated pairs of longitudinal nerve cords cross-linked as an orthogon by transverse commissures. Confocal imaging reveals that these central nervous system elements are in continuity with an array of peripheral nerve plexuses which innervate a well-differentiated grid work of somatic muscle as well as a complexity of myofibres associated with organs of attachment, feeding, and reproduction. Electrophysiological studies of flatworm muscles have exposed a diversity of voltage-activated ion channels that influence muscle contractile events. Neuronal cell types are mainly multi- and bi-polar and highly secretory in nature, producing a heterogeneity of vesicular inclusions whose contents have been identified cytochemically to include all three major types of cholinergic, aminergic, and peptidergic messenger molecules. A landmark discovery in flatworm neurobiology was the biochemical isolation and amino acid sequencing of two groups of native neuropeptides: neuropeptide F and FMRFamide-related peptides (FaRPs). Both families of neuropeptide are abundant and broadly distributed in platyhelminths, occurring in neuronal vesicles in representatives of all major flatworm taxa. Dual localization studies have revealed that peptidergic and cholinergic substances occupy neuronal sets separate from those of serotoninergic components. The physiological actions of neuronal messengers in flatworms are beginning to be established, and where examined, FaRPs and 5-HT are myoexcitatory, while cholinomimetic substances are generally inhibitory. There is immunocytochemical evidence that FaRPs and 5-HT have a regulatory role in the mechanism of egg assembly. Use of muscle strips and (or) muscle fibres from free-living and parasitic flatworms has provided baseline information to indicate that muscle responses to FaRPs are mediated by a G-protein-coupled receptor, and that the signal transduction pathway for contraction involves the second messengers cAMP and protein kinase C.