956 resultados para Caveolin-1-deficient Mice


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In multiple sclerosis and in its animal model experimental autoimmune encephalomyelitis (EAE), inflammatory cells migrate across the highly specialized endothelial blood-brain barrier (BBB) and gain access to the central nervous system (CNS). It is well established that leukocyte recruitment across this vascular bed is unique due to the predominant involvement of alpha4-integrins in mediating the initial contact to as well as firm adhesion with the endothelium. In contrast, the involvement of the selectins, L-selectin, E- and P-selectin and their respective carbohydrate ligands such as P-selectin glycoprotein (PSGL)-1 in this process has been controversially discussed. Intravital microscopic analysis of immune cell interaction with superficial brain vessels demonstrates a role for E- and P-selectin and their common ligand PSGL-1 in lymphocyte rolling. However, E- and P-selectin-deficient SJL- or C57Bl/6 mice or PSGL-1-deficient C57Bl/6 mice develop EAE indistinguishable from wild-type mice. Considering these apparently discrepant observations, it needs to be discussed whether the molecular mechanisms involved in leukocyte trafficking across superficial brain vessels are irrelevant for EAE pathogenesis or whether the therapeutic efficacy of targeting alpha4-integrins in EAE is truly dependent on the inhibition of leukocyte trafficking across the BBB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Growth/Differentiation Factors (GDFs) are a subgroup of the Bone Morphogenetic Proteins (BMPs) well known for their role in joint formation and chondrogenesis. Mice deficient in one of these signaling molecules, GDF-5, have recently been shown to exhibit a decreased rate of endochondral bone growth in the proximal tibia due to a significantly longer hypertrophic phase duration. GDF-7 is a related family member, which exhibits a high degree of sequence identity with GDF-5. The purpose of the present study was to determine whether GDF-7 deficiency also alters the endochondral bone growth rate in mice and, if so, how this is achieved. Stereologic and cell kinetic parameters in proximal tibial growth plates from 5-week-old female GDF-7 -/- mice and wild type control littermates were examined. GDF-7 deficiency resulted in a statistically significant increase in growth rate (+26%; p = 0.0084) and rate of cell loss at the chondrosseous junction (+25%; p = 0.0217). Cells from GDF-7 deficient mice also exhibited a significantly shorter hypertrophic phase duration compared to wild type controls (-27%; p = 0.0326). These data demonstrate that, in the absence of GDF-7, the rate of endochondral bone growth is affected through the modulation of hypertrophic phase duration in growth plate chondrocytes. These findings further support a growing body of evidence implicating the GDFs in the formation, maturation, and maintenance of healthy cartilage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth/differentiation factors (GDFs) are a subgroup of the bone morphogenetic proteins best known for their role in joint formation and chondrogenesis. Mice deficient in one of these signaling proteins, GDF-5, exhibit numerous skeletal abnormalities, including shortened limb bones. The primary aim of this study was determine whether GDF-5 deficiency would alter the growth rate in growth plates from the long bones in mice and, if so, how this is achieved. Stereologic and cell kinetic parameters in proximal tibial growth plates from 5-week-old female GDF-5 -/- mice and control littermates were examined. GDF-5 deficiency resulted in a statistically significant reduction in growth rate (-14%, p=0.03). The effect of genotype on growth rate was associated with an altered hypertrophic phase duration, with hypertrophic cells from GDF-5 deficient mice exhibiting a significantly longer phase duration compared to control littermates (+25%, p=0.006). These data suggest that one way in which GDF-5 might modulate the rate of endochondral bone growth could be by affecting the duration of the hypertrophic phase in growth plate chondrocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inhibiting the alpha(4) subunit of the integrin heterodimers alpha(4)beta(1) and alpha(4)beta(7) with the monoclonal antibody natalizumab is an effective treatment for multiple sclerosis (MS). However, the pharmacological action of natalizumab is not understood conclusively. Previous studies suggested that natalizumab inhibits activation, proliferation, or extravasation of inflammatory cells. To specify which mechanisms, cell types, and alpha(4) heterodimers are affected by the antibody treatment, we studied MS-like experimental autoimmune encephalomyelitis (EAE) in mice lacking the beta(1)-integrin gene either in all hematopoietic cells or selectively in T lymphocytes. Our results show that T cells critically rely on beta(1) integrins to accumulate in the central nervous system (CNS) during EAE, whereas CNS infiltration of beta(1)-deficient myeloid cells remains unaffected, suggesting that T cells are the main target of anti-alpha(4)-antibody blockade. We demonstrate that beta(1)-integrin expression on encephalitogenic T cells is critical for EAE development, and we therefore exclude alpha(4)beta(7) as a target integrin of the antibody treatment. T cells lacking beta(1) integrin are unable to firmly adhere to CNS endothelium in vivo, whereas their priming and expansion remain unaffected. Collectively, these results suggest that the primary action of natalizumab is interference with T cell extravasation via inhibition of alpha(4)beta(1) integrins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multi-BCL-2 homology domain pro-apoptotic BCL-2 family members BAK and BAX have critical roles in apoptosis. They are essential for mitochondrial outer-membrane permeabilization, leading to the release of apoptogenic factors such as cytochrome-c, which promote activation of the caspase cascade and cellular demolition. The BOK protein has extensive amino-acid sequence similarity to BAK and BAX and is expressed in diverse cell types, particularly those of the female reproductive tissues. The BOK-deficient mice have no readily discernible abnormalities, and its function therefore remains unresolved. We hypothesized that BOK may exert functions that overlap with those of BAK and/or BAX and examined this by generating Bok−/−Bak−/− and Bok−/−Bax−/− mice. Combined loss of BOK and BAK did not elicit any noticeable defects, although it remains possible that BOK and BAK have critical roles in developmental cell death that overlap with those of BAX. In most tissues examined, loss of BOK did not exacerbate the abnormalities caused by loss of BAX, such as defects in spermatogenesis or the increase in neuronal populations in the brain and retina. Notably, however, old Bok−/−Bax−/− females had abnormally increased numbers of oocytes from different stages of development, indicating that BOK may have a pro-apoptotic function overlapping with that of BAX in age-related follicular atresia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The BH3-only protein Bim is a critical initiator of apoptosis in hematopoietic cells. Bim is upregulated in response to growth factor withdrawal and in vitro studies have implicated the transcription factor Foxo3a as a critical inducer. To test the importance of this regulation in vivo, we generated mice with mutated Foxo-binding sites within the Bim promoters (Bim(ΔFoxo/ΔFoxo)). Contrary to Bim-deficient mice, Bim(ΔFoxo/ΔFoxo) mice had a normal hematopoietic system. Moreover, cytokine-dependent haematopoietic cells from Bim(ΔFoxo/ΔFoxo) and wt mice died at similar rates. These results indicate that regulation of Bim by Foxo transcription factors is not critical for the killing of hematopoietic cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fatalities from schistosome infections arise due to granulomatous, immune-mediated responses to eggs that become trapped in host tissues. Schistosome-specific immune responses are characterized by initial Th1 responses and our previous studies demonstrated that Myd88-deficient mice failed to initiate such responses in vivo. Paradoxically, schistosomal antigens fail to stimulate innate cells to release pro-inflammatory cytokines in vitro. Since S. mansoni infection is an intestinal disease, we hypothesized that commensal bacteria could act as bystander activators of the intestinal innate immune system to instigate Th1 responses. Using a broad spectrum of orally-administered antibiotics and antimycotics we analyzed schistosome-infected mice that were simultaneously depleted of gut bacteria. After depletion there was significantly less inflammation in the intestine which was accompanied by decreased intestinal granuloma development. In contrast, liver pathology remained unaltered. In addition, schistosome-specific immune responses were skewed and fecal egg excretion was diminished. This study demonstrates that host microbiota can act as a third partner in instigating helminth-specific immune responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activated T cells use very late antigen-4/α4β1 integrin for capture, rolling on, and firm adhesion to endothelial cells, and use leukocyte function-associated antigen-1/αLβ2 integrin for subsequent crawling and extravasation. Inhibition of α4β1 is sufficient to prevent extravasation of activated T cells and is successfully used to combat autoimmune diseases, such as multiple sclerosis. Here we show that effector T cells lacking the integrin activator Kindlin-3 extravasate and induce experimental autoimmune encephalomyelitis in mice immunized with autoantigen. In sharp contrast, adoptively transferred autoreactive T cells from Kindlin-3-deficient mice fail to extravasate into the naïve CNS. Mechanistically, autoreactive Kindlin-3-null T cells extravasate when the CNS is inflamed and the brain microvasculature expresses high levels of integrin ligands. Flow chamber assays under physiological shear conditions confirmed that Kindlin-3-null effector T cells adhere to high concentrations of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1, albeit less efficiently than WT T cells. Although these arrested T cells polarize and start crawling, only few remain firmly adherent over time. Our data demonstrate that the requirement of Kindlin-3 for effector T cells to induce α4β1 and αLβ2 integrin ligand binding and stabilization of integrin-ligand bonds is critical when integrin ligand levels are low, but of less importance when integrin ligand levels are high.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular mechanisms controlling bone extracellular matrix (ECM) deposition by differentiated osteoblasts in postnatal life, called hereafter bone formation, are unknown. This contrasts with the growing knowledge about the genetic control of osteoblast differentiation during embryonic development. Cbfa1, a transcriptional activator of osteoblast differentiation during embryonic development, is also expressed in differentiated osteoblasts postnatally. The perinatal lethality occurring in Cbfa1-deficient mice has prevented so far the study of its function after birth. To determine if Cbfa1 plays a role during bone formation we generated transgenic mice overexpressing Cbfa1 DNA-binding domain (DeltaCbfa1) in differentiated osteoblasts only postnatally. DeltaCbfa1 has a higher affinity for DNA than Cbfa1 itself, has no transcriptional activity on its own, and can act in a dominant-negative manner in DNA cotransfection assays. DeltaCbfa1-expressing mice have a normal skeleton at birth but develop an osteopenic phenotype thereafter. Dynamic histomorphometric studies show that this phenotype is caused by a major decrease in the bone formation rate in the face of a normal number of osteoblasts thus indicating that once osteoblasts are differentiated Cbfa1 regulates their function. Molecular analyses reveal that the expression of the genes expressed in osteoblasts and encoding bone ECM proteins is nearly abolished in transgenic mice, and ex vivo assays demonstrated that DeltaCbfa1-expressing osteoblasts were less active than wild-type osteoblasts. We also show that Cbfa1 regulates positively the activity of its own promoter, which has the highest affinity Cbfa1-binding sites characterized. This study demonstrates that beyond its differentiation function Cbfa1 is the first transcriptional activator of bone formation identified to date and illustrates that developmentally important genes control physiological processes postnatally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RecA in Escherichia coli and it's homologue, ScRad51 in Saccharomyces cerevisiae, play important roles in recombinational repair. ScRad51 homologues have been discovered in a wide range of organisms including Schizosaccharomyces pombe, lily, chicken, mouse and human. To date there is no direct evidence to describe that mouse Rad51(MmRad51) is involved in DNA double-strand break repair. In order to elucidate the role of MmRad51 in vivo, it was mutated by the embryonic stem (ES) cell/gene targeting technology in mice. The mutant embryos arrested in development shortly after implantation. There was a decrease in cell proliferation followed by programmed cell death, and trophectoderm-derived cells were sensitive to $\gamma$-radiation. Severe chromosome loss was observed in most mitotically dividing cells. The mutant embryos lived longer and developed further in a p53 mutant background; however, double-mutant embryonic fibroblasts failed to proliferate in tissue culture, reflecting the embryos limited life span. Based on these data, MmRad51 repairs DNA damage induced by $\gamma$-radiation, is needed to maintain euplody, and plays an important role in proliferating cells.^ Ku is a heterodimer of 70 and 80 kDs subunit, which binds to DNA ends and other altered DNA structures such as hairpins, nicks, and gaps. In addition, Ku is required for DNA-PK activity through a direct association. Although the biochemical properties of Ku and DNA-PKcs have been characterized in cells, their physiological functions are not clear. In order to understand the function of Ku in vivo, we generated mice homozygous for a mutation of the Ku80 gene. Ku80-deficient mice, like scid mice, showed severe immunodeficiency due to a impairment of V(D)J recombination. Mutant mice were semiviable and runted, cells derived from mutant embryos displayed hypersensitivity to $\gamma$-radiation, a decreased growth rate, a slow entry into S phase, altered colony size distributions, and a short life span. Based on these results, mutant cells and mice appeared to prematurely age. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies from our lab have established that large molecular weight mucin glycoproteins are major apically-disposed components of mouse uterine epithelial cells in vitro (Valdizan et al., (1992) J. Cell. Physiol. 151:451-465). The present studies demonstrate that Muc-1 represents one of the apically-disposed mucin glycoproteins of mouse uterine epithelia, and that Muc-1 protein and mRNA expression are regulated in the peri-implantation stage mouse uterus by ovarian steroids. Muc-1 expression is high in the proestrous and estrous stages, and decreases during diestrous. Both Muc-1 protein and mRNA levels decline to barely detectable levels by day 4 of pregnancy, i.e., prior to the time of blastocyst attachment. In contrast, Muc-1 expression in the cervix and vagina is maintained during this same period. Delayed implantation was established in pregnant mice by ovariectomy and maintained by administration of exogenous progesterone. Initiation of implantation was triggered by coinjection of progesterone maintained mice with a nidatory dose of 17$\beta$-estradiol. Muc-1 levels in the uterine epithelia of progesterone maintained mice declined to similar low levels as observed on day 4 of normal pregnancy. Coinjection of estradiol did not alter Muc-1 expression suggesting that down-regulation of Muc-1 is a progesterone dominated event. This was confirmed in ovariectomized, non-pregnant mice which displayed stimulation of Muc-1 expression following 6 hr of estradiol injection. Estradiol stimulated Muc-1 expression was inhibited by the pure antiestrogen, ICI 164,384. While progesterone alone had no effect on Muc-1 expression, it antagonized estradiol action in this regard. Injection of pregnant mice with the antiprogestin, RU 486, a known implantation inhibitor, on day 3 of pregnancy restored high level expression of Muc-1 mRNA on day 4, indicating that down-regulation of Muc-1 is progesterone receptor-mediated. Muc-1 appears to function as an anti-adhesive molecule at the apical cell surface of mouse uterine epithelial cells. Treatment of polarized cultures of mouse uterine epithelial cells with O-sialoglycoprotein endopeptidase reduced mucin expression in vitro, by about 50%, and converted polarized uterine epithelia to a functionally receptive state. Similarly, ablation of Muc-1 in Muc-1 null mice resulted in polarized uterine epithelia that were functionally receptive as compared to their wild-type counterparts in vitro. Collectively, these data indicate that Muc-1 and other mucins function as anti-adhesive molecules and that reduction or removal of these molecules is a prerequisite for the generation of a receptive uterine state. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FgfrL1, which interacts with Fgf ligands and heparin, is a member of the fibroblast growth factor receptor (Fgfr) family. FgfrL1-deficient mice show two significant alterations when compared to wildtype mice: They die at birth due to a malformed diaphragm and they lack metanephric kidneys. Utilizing gene arrays, qPCR and in situ hybridization we show here that the diaphragm of FgfrL1 knockout animals lacks any slow muscle fibers at E18.5 as indicated by the absence of slow fiber markers Myh7, Myl2 and Myl3. Similar lesions are also found in other skeletal muscles that contain a high proportion of slow fibers at birth, such as the extraocular muscles. In contrast to the slow fibers, fast fibers do not appear to be affected as shown by expression of fast fiber markers Myh3, Myh8, Myl1 and MylPF. At early developmental stages (E10.5, E15.5), FgfrL1-deficient animals express slow fiber genes at normal levels. The loss of slow fibers cannot be attributed to the lack of kidneys, since Wnt4 knockout mice, which also lack metanephric kidneys, show normal expression of Myh7, Myl2 and Myl3. Thus, FgfrL1 is specifically required for embryonic development of slow muscle fibers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FgfrL1 is the fifth member of the fibroblast growth factor receptor (Fgfr) family. Studies with FgfrL1 deficient mice have demonstrated that the gene plays an important role during embryonic development. FgfrL1 knock-out mice die at birth as they have a malformed diaphragm and lack metanephric kidneys. Similar to the classical Fgfrs, the FgfrL1 protein contains an extracellular part composed of three Ig-like domains that interact with Fgf ligands and heparin. However, the intracellular part of FgfrL1 is not related to the classical receptors and does not possess any tyrosine kinase activity. Curiously enough, the amino acid sequence of this domain is barely conserved among different species, with the exception of three motifs, namely a dileucine peptide, a tandem tyrosine-based motif YXXΦ and a histidine-rich sequence. To investigate the function of the intracellular domain of FgfrL1, we have prepared genetically modified mice that lack the three conserved sequence motifs, but instead contain a GFP cassette (FgfrL1ΔC-GFP). To our surprise, homozygous FgfrL1ΔC-GFP knock-in mice are viable, fertile and phenotypically normal. They do not exhibit any alterations in the diaphragm or the kidney, except for a slight reduction in the number of glomeruli that does not appear to affect life expectancy. In addition, the pancreas of both FgfrL1ΔC-GFP knock-in and FgfrL1 knock-out mice do not show any disturbances in the production of insulin, in contrast to what has been suggested by recent studies. Thus, the conserved motifs of the intracellular FgfrL1 domain are dispensable for organogenesis and normal life. We conclude that the extracellular domain of the protein must conduct the vital functions of FgfrL1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macrophages regulate lymphatic vasculature development; however, the molecular mechanisms regulating their recruitment to developing, and adult, lymphatic vascular sites are not known. Here, we report that resting mice deficient for the inflammatory chemokine-scavenging receptor, ACKR2, display increased lymphatic vessel density in a range of tissues under resting and regenerating conditions. This appears not to alter dendritic cell migration to draining lymph nodes but is associated with enhanced fluid drainage from peripheral tissues and thus with a hypotensive phenotype. Examination of embryonic skin revealed that this lymphatic vessel density phenotype is developmentally established. Further studies indicated that macrophages and the inflammatory CC-chemokine CCL2, which is scavenged by ACKR2, are associated with this phenotype. Accordingly, mice deficient for the CCL2 signalling receptor, CCR2, displayed a reciprocal phenotype of reduced lymphatic vessel density. Further examination revealed that proximity of pro-lymphangiogenic macrophages to developing lymphatic vessel surfaces is increased in ACKR2-deficient mice and reduced in CCR2-deficient mice. Therefore, these receptors regulate vessel density by reciprocally modulating pro-lymphangiogenic macrophage recruitment, and proximity, to developing, resting and regenerating lymphatic vessels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eosinophils natively inhabit the small intestine, but a functional role for them there has remained elusive. Here, we show that eosinophil-deficient mice were protected from induction of Th2-mediated peanut food allergy and anaphylaxis, and Th2 priming was restored by reconstitution with il4(+/+) or il4(-/-) eosinophils. Eosinophils controlled CD103(+) dendritic cell (DC) activation and migration from the intestine to draining lymph nodes, events necessary for Th2 priming. Eosinophil activation in vitro and in vivo led to degranulation of eosinophil peroxidase, a granule protein whose enzymatic activity promoted DC activation in mice and humans in vitro, and intestinal and extraintestinal mouse DC activation and mobilization to lymph nodes in vivo. Further, eosinophil peroxidase enhanced responses to ovalbumin seen after immunization. Thus, eosinophils can be critical contributors to the intestinal immune system, and granule-mediated shaping of DC responses can promote both intestinal and extraintestinal adaptive immunity.