1000 resultados para Carbon, organic, particulate flux, standard deviation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since 2000 long-term measurements of vertical particle flux have been performed with moored sediment traps at the long-term observatory HAUSGARTEN in the eastern Fram Strait (79°N/4°E). The study area, which is seasonally covered with ice, is located in the confluence zone of the northward flowing warm saline Atlantic water with cold, low salinity water masses of Arctic origin. Current projections suggest that this area is particularly vulnerable to global warming. Total matter fluxes and components thereof (carbonate, particulate organic carbon and nitrogen, biogenic silica, biomarkers) revealed a bimodal seasonal pattern showing elevated sedimentation rates during May/June and August/September. Annual total matter flux (dry weight, DW) at ~ 300 m depth varied between 13 and 32 g/m**2/a during 2000 and 2005. Of this total flux 6-13 % was due to CaCO3, 4-21 % to refractory particulate organic carbon (POC), and 3-8 % to biogenic particulate silica (bPSi). The annual flux of all biogenic components together was almost constant during the period studied (8.5-8.8 g/m**2/a), although this varied from 27 to 67 % of the total annual flux. The fraction was lowest in a year characterized by the longest duration of ice coverage (91 and 70 days for the calendar year and summer season, May-September, respectively). Biomarker analyses revealed that organic matter originating from marine sources was present in excess of terrigenious material in the sedimented matter throughout most of the study period. Fluxes of recognizable phyto- and protozooplankton cells amounted up to 60x106 m**2/d. Diatoms and coccolithophorids were the most abundant organisms. Diatoms, mainly pennate species, dominated during the first years of the investigation. A shift in the composition occurred during the last year when numbers of diatoms declined considerably, leading to a dominance of coccolithoporids. This was also reflected in a decrease in the sedimentation of bPSi. The sedimentation of biogenic matter, however, did not differ from the amount observed during the previous years. Among the larger organisms, pteropods at times contributed significantly to both the total matter and CaCO3, fluxes.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effects of CO2 concentration on elemental composition of the coccolithophore Emiliania huxleyi were studied in phosphorus-limited, continuous cultures that were acclimated to experimental conditions for 30 d prior to the first sampling. We determined phytoplankton and bacterial cell numbers, nutrients, particulate components like organic carbon (POC), inorganic carbon (PIC), nitrogen (PN), organic phosphorus (POP), transparent exopolymer particles (TEP), as well as dissolved organic carbon (DOC) and nitrogen (DON), in addition to carbonate system parameters at CO2 levels of 180, 380 and 750 µatm. No significant difference between treatments was observed for any of the measured variables during repeated sampling over a 14 d period. We considered several factors that might lead to these results, i.e. light, nutrients, carbon overconsumption and transient versus steady-state growth. We suggest that the absence of a clear CO2 effect during this study does not necessarily imply the absence of an effect in nature. Instead, the sensitivity of the cell towards environmental stressors such as CO2 may vary depending on whether growth conditions are transient or sufficiently stable to allow for optimal allocation of energy and resources. We tested this idea on previously published data sets where PIC and POC divided by the corresponding cell abundance of E. huxleyi at various pCO2 levels and growth rates were available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since 1983 time-series traps have been deployed in the Atlantic sector of the Southern Ocean to measure the flux of organic carbon, biogenic silica and carbonate. The organic carbon flux data are used to calculate primary production rates and organic carbon fluxes at 100 m water depth. From these calculations, annual primary production rates range from about 170 g C m**-2 in the coastal area (Bransfield Strait) to almost zero in the Permanent Sea-Ice Zone. High rates (of about 80 g C m**-2 year**-1 ) were calculated for the Polar Front Zone and rather low values (about 20 g C m**-2 year**-1 ) characterize the Maud Rise area. The estimated primary production for the entire Southern Ocean (south of 50°S), using various subsystems with characteristic carbon fluxes, is in the order of 1 * 10**9tons year**-1; the organic carbon flux out of the photic layer is 0.17 * 10**9tons year**-1. Our calculation of the Southern Ocean total annual primary production is substantially lower than previously reported values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flux of bulk components, carbonate- and silicate-bearing skeleton organisms, and the d15N-isotopic signal were investigated on a 1-year time-series sediment trap deployed at the pelagic NU mooring site (Namibia Upwelling, ca. 29°S, 13°E) in the central Benguela System. The flux of bulk components mostly shows bimodal seasonality with major peaks in austral summer and winter, and moderate to low export in austral fall and spring. The calcium carbonate fraction dominates the export of particulates throughout the year, followed by lithogenic and biogenic opal. Planktonic foraminifera and coccolithophorids are major components of the carbonate fraction, while diatoms clearly dominate the biogenic opal fraction. Bulk d15N isotopic composition of particulate matter is positively correlated with the total mass flux during summer and fall, while negatively correlated during winter and spring. Seasonal changes in the intensity of the main oceanographic processes affecting the NU site are inferred from variations in bulk component flux, and in the flux and diversity patterns of individual species or group of species. Influence from the Namaqua (Hondeklip) upwelling cell through offshore migration of chlorophyll filaments is stronger in summer, while the winter flux maximum seems to reflect mainly in situ production, with less influence from the coastal and shelf upwelling areas. On a yearly basis, dominant microorganisms correspond well with the flora and fauna of tropical/subtropical waters, with minor contribution of near-shore organisms. The simultaneous occurrence of species with different ecological affinities mirrors the fact that the mooring site was located in a transitional region with large hydrographic variability over short-time intervals.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A critical question regarding the organic carbon cycle in the Arctic Ocean is whether the decline in ice extent and thickness and the associated increase in solar irradiance in the upper ocean will result in increased primary production and particulate organic carbon (POC) export. To assess spatial and temporal variability in POC export, under-ice export fluxes were measured with short-term sediment traps in the northern Laptev Sea in July-August-September 1995, north of the Fram Strait in July 1997, and in the Central Arctic in August-September 2012. Sediment traps were deployed at 2-5 m and 20-25 m under ice for periods ranging from 8.5 to 71 h. In addition to POC fluxes, total particulate matter, chlorophyll a, biogenic particulate silica, phytoplankton, and zooplankton fecal pellet fluxes were measured to evaluate the amount and composition of the material exported in the upper Arctic Ocean. Whereas elevated export fluxes observed on and near the Laptev Sea shelf were likely the combined result of high primary production, resuspension, and release of particulate matter from melting ice, low export fluxes above the central basins despite increased light availability during the record minimum ice extent of 2012 suggest that POC export was limited by nutrient supply during summer. These results suggest that the ongoing decline in ice cover affects export fluxes differently on Arctic shelves and over the deep Arctic Ocean and that POC export is likely to remain low above the central basins unless additional nutrients are supplied to surface waters.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador: