933 resultados para Cancer Diet therapy
Resumo:
It is now widely recognized that translation factors are involved in cancer development and that components of the translation machinery that are deregulated in cancer cells may become targets for cancer therapy. The eukaryotic Release Factor 3 (eRF3) is a GTPase that associates with eRF1 in a complex that mediates translation termination. eRF3a/GSPT1 first exon contains a (GGC)n expansion coding for proteins with different N-terminal extremities. Herein we show that the longer allele (12-GGC) is present in 5.1% (7/137) of the breast cancer patients analysed and is absent in the control population (0/135), corresponding to an increased risk for cancer development, as revealed by Odds Ratio analysis. mRNA quantification suggests that patients with the 12-GGC allele overexpress eRF3a/GSPT1 in tumor tissues relative to the normal adjacent tissues. However, using an in vivo assay for translation termination in HEK293 cells, we do not detect any difference in the activity of the eRF3a proteins encoded by the various eRF3a/GSPT1 alleles. Although the connection between the presence of eRF3a/GSPT1 12-GGC allele and tumorigenesis is still unknown, our data suggest that the presence of the 12-GGC allele provides a potential novel risk marker for various types of cancer.
Resumo:
Background - Both genetic and environmental factors affect the risk of colorectal cancer (CRC). Objective - We aimed to examine the interaction between the D1822V polymorphism of the APC gene and dietary intake in persons with CRC. Design - Persons with CRC (n = 196) and 200 healthy volunteers, matched for age and sex in a case-control study, were evaluated with respect to nutritional status and lifestyle factors and for the D1822V polymorphism. Results - No significant differences were observed in energy and macronutrient intakes. Cases had significantly (P < 0.05) lower intakes of carotenes, vitamins C and E, folate, and calcium than did controls. Fiber intake was significantly (P = 0.004) lower in cases than in controls, whereas alcohol consumption was associated with a 2-fold risk of CRC. In addition, cases were significantly (P = 0.001) more likely than were controls to be sedentary. The homozygous variant for the APC gene (VV) was found in 4.6% of cases and in 3.5% of controls. Examination of the potential interactions between diet and genotype found that a high cholesterol intake was associated with a greater risk of colorectal cancer only in noncarriers (DD) of the D1822V APC allele (odds ratio: 1.66; 95% CI: 1.00, 2.76). In contrast, high fiber and calcium intakes were more markedly associated with a lower risk of CRC in patients carrying the polymorphic allele (DV/VV) (odds ratio: 0.50; 95% CI: 0.27, 0.94 for fiber; odds ratio: 0.51; 95% CI: 0.28, 0.93 for calcium) than in those without that allele. Conclusion - These results suggest a significant interaction between the D1822V polymorphism and the dietary intakes of cholesterol, calcium, and fiber for CRC risk.
Resumo:
Bladder cancer is a common urologic cancer and the majority has origin in the urothelium. Patients with intermediate and high risk of recurrence/progression bladder cancer are treated with intravesical instillation with Bacillus Calmette-Guérin, however, approximately 30% of patients do not respond to treatment. At the moment, there are no accepted biomarkers do predict treatment outcome and an early identification of patients better served by alternative therapeutics. The treatment initiates a cascade of cytokines responsible by recruiting macrophages to the tumor site that have been shown to influence treatment outcome. Effective BCG therapy needs precise activation of the Th1 immune pathway associated with M1 polarized macrophages. However, tumor-associated macrophages (TAMs) often assume an immunoregulatory M2 phenotype, either immunosuppressive or angiogenic, that interfere in different ways with the BCG induced antitumor immune response. The M2 macrophage is influenced by different microenvironments in the stroma and the tumor. In particular, the degree of hypoxia in the tumors is responsible by the recruitment and differentiation of macrophages into the M2 angiogenic phenotype, suggested to be associated with the response to treatment. Nevertheless, neither the macrophage phenotypes present nor the influence of localization and hypoxia have been addressed in previous studies. Therefore, this work devoted to study the influence of TAMs, in particular of the M2 phenotype taking into account their localization (stroma or tumor) and the degree of hypoxia in the tumor (low or high) in BCG treatment outcome. The study included 99 bladder cancer patients treated with BCG. Tumors resected prior to treatment were evaluated using immunohistochemistry for CD68 and CD163 antigens, which identify a lineage macrophage marker and a M2-polarized specific cell surface receptor, respectively. Tumor hypoxia was evaluated based on HIF-1α expression. As a main finding it was observed that a high predominance of CD163+ macrophage counts in the stroma of tumors under low hypoxia was associated with BCG immunotherapy failure, possibly due to its immunosuppressive phenotype. This study further reinforces the importance the tumor microenvironment in the modulation of BCG responses.
Resumo:
Radiotherapy is one of the therapeutics selected for localized prostate cancer, in cases where the tumour is confined to the prostate, penetrates the prostatic capsule or has reached the seminal vesicles (T1 to T3 stages). The radiation therapy can be administered through various modalities, being historically used the 3D conformal radiotherapy (3DCRT). Other modality of radiation administration is the intensity modulated radiotherapy (IMRT), that allows an increase of the total dose through modulation of the treatment beams, enabling a reduction in toxicity. One way to administer IMRT is through helical tomotherapy (TH). With this study we intent to analyze the advantages of helical tomotherapy when compared with 3DCRT, by evaluating the doses in the organs at risk (OAR) and planning target volumes (PTV).
Resumo:
Prostate cancer (PCa) is one of the most incident malignancies worldwide. Although efficient therapy is available for early-stage PCa, treatment of advanced disease is mainly ineffective and remains a clinical challenge. microRNA (miRNA) dysregulation is associated with PCa development and progression. In fact, several studies have reported a widespread downregulation of miRNAs in PCa, which highlights the importance of studying compounds capable of restoring the global miRNA expression. The main aim of this study was to define the usefulness of enoxacin as an anti-tumoral agent in PCa, due to its ability to induce miRNA biogenesis in a TRBP-mediated manner. Using a panel of five PCa cell lines, we observed that all of them were wild type for the TARBP2 gene and expressed TRBP protein. Furthermore, primary prostate carcinomas displayed normal levels of TRBP protein. Remarkably, enoxacin was able to decrease cell viability, induce apoptosis, cause cell cycle arrest, and inhibit the invasiveness of cell lines. Enoxacin was also effective in restoring the global expression of miRNAs. This study is the first to show that PCa cells are highly responsive to the anti-tumoral effects of enoxacin. Therefore, enoxacin constitutes a promising therapeutic agent for PCa.
Resumo:
Background: Current therapeutic strategies for advanced prostate cancer (PCa) are largely ineffective. Because aberrant DNA methylation associated with inappropriate gene-silencing is a common feature of PCa, DNA methylation inhibitors might constitute an alternative therapy. In this study we aimed to evaluate the anti-cancer properties of RG108, a novel non-nucleoside inhibitor of DNA methyltransferases (DNMT), in PCa cell lines. Methods: The anti-tumoral impact of RG108 in LNCaP, 22Rv1, DU145 and PC-3 cell lines was assessed through standard cell viability, apoptosis and cell cycle assays. Likewise, DNMT activity, DNMT1 expression and global levels of DNA methylation were evaluated in the same cell lines. The effectiveness of DNA demethylation was further assessed through the determination of promoter methylation and transcript levels of GSTP1, APC and RAR-β2, by quantitative methylation-specific PCR and RT-PCR, respectively. Results: RG108 led to a significant dose and time dependent growth inhibition and apoptosis induction in LNCaP, 22Rv1 and DU145. LNCaP and 22Rv1 also displayed decreased DNMT activity, DNMT1 expression and global DNA methylation. Interestingly, chronic treatment with RG108 significantly decreased GSTP1, APC and RAR-β2 promoter hypermethylation levels, although mRNA re-expression was only attained GSTP1 and APC. Conclusions: RG108 is an effective tumor growth suppressor in most PCa cell lines tested. This effect is likely mediated by reversion of aberrant DNA methylation affecting cancer related-genes epigenetically silenced in PCa. However, additional mechanism might underlie the anti-tumor effects of RG108. In vivo studies are now mandatory to confirm these promising results and evaluate the potential of this compound for PCa therapy.
Resumo:
Histone variants seem to play a major role in gene expression regulation. In prostate cancer, H2A.Z and its acetylated form are implicated in oncogenes’ upregulation. SIRT1, which may act either as tumor suppressor or oncogene, reduces H2A.Z levels in cardiomyocytes, via proteasome-mediated degradation, and this mechanism might be impaired in prostate cancer cells due to sirtuin 1 downregulation. Thus, we aimed to characterize the mechanisms underlying H2A.Z and SIRT1 deregulation in prostate carcinogenesis and how they interact. We found that H2AFZ and SIRT1 were up- and downregulated, respectively, at transcript level in primary prostate cancer and high-grade prostatic intraepithelial neoplasia compared to normal prostatic tissues. Induced SIRT1 overexpression in prostate cancer cell lines resulted in almost complete absence of H2A.Z. Inhibition of mTOR had a modest effect on H2A.Z levels, but proteasome inhibition prevented the marked reduction of H2A.Z due to sirtuin 1 overexpression. Prostate cancer cells exposed to epigenetic modifying drugs trichostatin A, alone or combined with 5-aza-2’-deoxycytidine, increased H2AFZ transcript, although with a concomitant decrease in protein levels. Conversely, SIRT1 transcript and protein levels increased after exposure. ChIP revealed an increase of activation marks within the TSS region for both genes. Remarkably, inhibition of sirtuin 1 with nicotinamide, increased H2A.Z levels, whereas activation of sirtuin 1 by resveratrol led to an abrupt decrease in H2A.Z. Finally, protein-ligation assay showed that exposure to epigenetic modifying drugs fostered the interaction between sirtuin 1 and H2A.Z. We concluded that sirtuin 1 and H2A.Z deregulation in prostate cancer are reciprocally related. Epigenetic mechanisms, mostly histone post-translational modifications, are likely involved and impair sirtuin 1-mediated downregulation of H2A.Z via proteasome-mediated degradation. Epigenetic modifying drugs in conjunction with enzymatic modulators are able to restore the normal functions of sirtuin 1 and might constitute relevant tools for targeted therapy of prostate cancer patients
Resumo:
We consider a dynamical model of cancer growth including three interacting cell populations of tumor cells, healthy host cells and immune effector cells. For certain parameter choice, the dynamical system displays chaotic motion and by decreasing the response of the immune system to the tumor cells, a boundary crisis leading to transient chaotic dynamics is observed. This means that the system behaves chaotically for a finite amount of time until the unavoidable extinction of the healthy and immune cell populations occurs. Our main goal here is to apply a control method to avoid extinction. For that purpose, we apply the partial control method, which aims to control transient chaotic dynamics in the presence of external disturbances. As a result, we have succeeded to avoid the uncontrolled growth of tumor cells and the extinction of healthy tissue. The possibility of using this method compared to the frequently used therapies is discussed. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Prostate cancer (PCa) is a major cause of cancer-related morbidity and mortality worldwide. Although early disease is often efficiently managed therapeutically, available options for advanced disease are mostly ineffective. Aberrant DNA methylation associated with gene-silencing of cancer-related genes is a common feature of PCa. Therefore, DNA methylation inhibitors might constitute an attractive alternative therapy. Herein, we evaluated the anti-cancer properties of hydralazine, a non-nucleoside DNA methyltransferases (DNMT) inhibitor, in PCa cell lines. In vitro assays showed that hydralazine exposure led to a significant dose and time dependent growth inhibition, increased apoptotic rate and decreased invasiveness. Furthermore, it also induced cell cycle arrest and DNA damage. These phenotypic effects were particularly prominent in DU145 cells. Following hydralazine exposure, decreased levels of DNMT1, DNMT3a and DNMT3b mRNA and DNMT1 protein were depicted. Moreover, a significant decrease in GSTP1, BCL2 and CCND2 promoter methylation levels, with concomitant transcript re-expression, was also observed. Interestingly, hydralazine restored androgen receptor expression, with upregulation of its target p21 in DU145 cell line. Protein array analysis suggested that blockage of EGF receptor signaling pathway is likely to be the main mechanism of hydralazine action in DU145 cells. Our data demonstrate that hydralazine attenuated the malignant phenotype of PCa cells, and might constitute a useful therapeutic tool.
Resumo:
1st ASPIC International Congress
Resumo:
Squamous anal cell carcinoma is a rare malignancy that represents the 1.5% to 2% of all the lower digestive tract cancers. However, an increased incidence of invasive anal carcinoma is observed in HIV-seropositive population since the widespread of highly active antiretroviral therapy. Human papillomavirus is strongly associated with the pathogenesis of anal cancer. Anal intercourse and a high number of sexual partners appear to be risk factors to develop anal cancer in both sexes. Anal pain, bleeding and a palpable lesion in the anal canal are the most common clinical features. Endo-anal ultrasound is the best diagnosis method to evaluate the tumor size, the tumor extension and the infiltration of the sphincter muscle complex. Chemoradiotherapy plus antiretroviral therapy are the recommended treatments for all stages of localized squamous cell carcinoma of the anal canal in HIV-seropositive patients because of its high rate of cure. Here we present an HIV patient who developed a carcinoma of the anal canal after a long time of HIV infection under highly active antiretroviral therapy with a good virological and immunological response.
Resumo:
The hypoxia inducible factor 1 alpha (HIF1a) is a key regulator of tumour cell response to hypoxia, orchestrating mechanisms known to be involved in cancer aggressiveness and metastatic behaviour. In this study we sought to evaluate the association of a functional genetic polymorphism in HIF1A with overall and metastatic prostate cancer (PCa) risk and with response to androgen deprivation therapy (ADT). The HIF1A +1772 C>T (rs11549465) polymorphism was genotyped, using DNA isolated from peripheral blood, in 1490 male subjects (754 with prostate cancer and 736 controls cancer-free) through Real-Time PCR. A nested group of cancer patients who were eligible for androgen deprivation therapy was followed up. Univariate and multivariate models were used to analyse the response to hormonal treatment and the risk for developing distant metastasis. Age-adjusted odds ratios were calculated to evaluate prostate cancer risk. Our results showed that patients under ADT carrying the HIF1A +1772 T-allele have increased risk for developing distant metastasis (OR, 2.0; 95%CI, 1.1-3.9) and an independent 6-fold increased risk for resistance to ADT after multivariate analysis (OR, 6.0; 95%CI, 2.2-16.8). This polymorphism was not associated with increased risk for being diagnosed with prostate cancer (OR, 0.9; 95%CI, 0.7-1.2). The HIF1A +1772 genetic polymorphism predicts a more aggressive prostate cancer behaviour, supporting the involvement of HIF1a in prostate cancer biological progression and ADT resistance. Molecular profiles using hypoxia markers may help predict clinically relevant prostate cancer and response to ADT.
Resumo:
The hypoxia inducible factor 1 alpha (HIF1a) is a key regulator of tumour cell response to hypoxia, orchestrating mechanisms known to be involved in cancer aggressiveness and metastatic behaviour. In this study we sought to evaluate the association of a functional genetic polymorphism in HIF1A with overall and metastatic prostate cancer (PCa) risk and with response to androgen deprivation therapy (ADT). The HIF1A +1772 C>T (rs11549465) polymorphism was genotyped, using DNA isolated from peripheral blood, in 1490 male subjects (754 with prostate cancer and 736 controls cancer-free) through Real-Time PCR. A nested group of cancer patients who were eligible for androgen deprivation therapy was followed up. Univariate and multivariate models were used to analyse the response to hormonal treatment and the risk for developing distant metastasis. Age-adjusted odds ratios were calculated to evaluate prostate cancer risk. Our results showed that patients under ADT carrying the HIF1A +1772 T-allele have increased risk for developing distant metastasis (OR, 2.0; 95%CI, 1.1-3.9) and an independent 6-fold increased risk for resistance to ADT after multivariate analysis (OR, 6.0; 95%CI, 2.2-16.8). This polymorphism was not associated with increased risk for being diagnosed with prostate cancer (OR, 0.9; 95%CI, 0.7-1.2). The HIF1A +1772 genetic polymorphism predicts a more aggressive prostate cancer behaviour, supporting the involvement of HIF1a in prostate cancer biological progression and ADT resistance. Molecular profiles using hypoxia markers may help predict clinically relevant prostate cancer and response to ADT.
Resumo:
BACKGROUND: Few randomised studies have compared antiandrogen intermittent hormonal therapy (IHT) with continuous maximal androgen blockade (MAB) therapy for advanced prostate cancer (PCa). OBJECTIVE: To determine whether overall survival (OS) on IHT (cyproterone acetate; CPA) is noninferior to OS on continuous MAB. DESIGN, SETTING, AND PARTICIPANTS: This phase 3 randomised trial compared IHT and continuous MAB in patients with locally advanced or metastatic PCa. INTERVENTION: During induction, patients received CPA 200 mg/d for 2 wk and then monthly depot injections of a luteinising hormone-releasing hormone (LHRH; triptoreline 11.25 mg) analogue plus CPA 200 mg/d. Patients whose prostate-specific antigen (PSA) was <4 ng/ml after 3 mo of induction treatment were randomised to the IHT arm (stopped treatment and restarted on CPA 300 mg/d monotherapy if PSA rose to ≥20 ng/ml or they were symptomatic) or the continuous arm (CPA 200 mg/d plus monthly LHRH analogue). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Primary outcome measurement was OS. Secondary outcomes included cause-specific survival, time to subjective or objective progression, and quality of life. Time off therapy in the intermittent arm was recorded. RESULTS AND LIMITATIONS: We recruited 1045 patients, of which 918 responded to induction therapy and were randomised (462 to IHT and 456 to continuous MAB). OS was similar between groups (p=0.25), and noninferiority of IHT was demonstrated (hazard ratio [HR]: 0.90; 95% confidence interval [CI], 0.76-1.07). There was a trend for an interaction between PSA and treatment (p=0.05), favouring IHT over continuous therapy in patients with PSA ≤1 ng/ml (HR: 0.79; 95% CI, 0.61-1.02). Men treated with IHT reported better sexual function. Among the 462 patients on IHT, 50% and 28% of patients were off therapy for ≥2.5 yr or >5 yr, respectively, after randomisation. The main limitation is that the length of time for the trial to mature means that other therapies are now available. A second limitation is that T3 patients may now profit from watchful waiting instead of androgen-deprivation therapy. CONCLUSIONS: Noninferiority of IHT in terms of survival and its association with better sexual activity than continuous therapy suggest that IHT should be considered for use in routine clinical practice.
Resumo:
Multiparametric Magnetic Resonance Imaging has been increasingly used for detection, localization and staging of prostate cancer over the last years. It combines high-resolution T2 Weighted-Imaging and at least two functional techniques, which include Dynamic Contrast–Enhanced Magnetic Resonance Imaging, Diffusion-Weighted Imaging, and Magnetic Resonance Imaging Spectroscopy. Although the combined use of a pelvic phased-array and an Endorectal Coil is considered the state-of-the-art for Magnetic Resonance Imaging evaluation of prostate cancer, Endorectal Coil is only absolute mandatory for Magnetic Resonance Imaging Spectroscopy at 1.5 T. Sensitivity and specificity levels in cancer detection and localization have been improving with functional technique implementation, compared to T2 Weighted-Imaging alone. It has been particularly useful to evaluate patients with abnormal PSA and negative biopsy. Moreover, the information added by the functional techniques may correlate to cancer aggressiveness and therefore be useful to select patients for focal radiotherapy, prostate sparing surgery, focal ablative therapy and active surveillance. However, more studies are needed to compare the functional techniques and understand the advantages and disadvantages of each one. This article reviews the basic principles of prostatic mp-Magnetic Resonance Imaging, emphasizing its role on detection, staging and active surveillance of prostate cancer.