970 resultados para California Academy of Sciences
Resumo:
No Abstract
Resumo:
Lymphedema is an accumulation of lymph fluid in the limb resulting from an insufficiency of the lymphatic system. It is commonly associated with surgical or radiotherapy treatment for breast cancer. As with many progressively debilitating disorders, the effectiveness of treatment is significantly improved by earlier intervention. Multiple frequency bioelectrical impedance analysis (MFBIA) previously was shown to provide accurate relative measures of lymphedema in the upper limb in patients after treatment for breast cancer, This presentation reports progress to date on a three-year prospective study to evaluate the efficacy of MFBIA to predict the early onset of lymphedema in breast cancer patients following treatment. Bioelectrical impedance measurements of each upper limb were recorded in a group of healthy control subjects (n = 50) to determine the ratio of extracellular limb-fluid volumes. From this population, the expected normal range of asymmetry (99.7% confidence) between the limbs was determined, Patients undergoing surgery to treat breast cancer were recruited into the study, and MFBIA measurements were recorded presurgery, at one month and three months after surgery, and then at two-month intervals for up to 24 months postsurgery, When patients had an MFBIA measure outside the 99.7% range of the control group, they were referred to their physician for clinical assessment. Results to date: Over 100 patients were recruited into the study over the past two years; at present, 19 have developed lymphedema and, of these, 12 are receiving treatment. In each of these 19 cases, MFBIA predicted the onset of the condition up to four months before it could be clinically diagnosed. The false-negative rate currently is zero, The study will continue to monitor patients over the remaining year to accurately ascertain estimates of specificity and sensitivity of the procedure.
Resumo:
The tetraphyllidean metacestode diversity of 310 teleost fishes, including 87 species from 31 families, was examined from Heron Island, The Great Barrier Reef, Australia. Eleven metacestode 'types' were identified with the use of light microscopy. Host-specificity varied greatly among metacestode types. Incorporation of in vitro cultivation allowed generic identification for some types. Types 1 and 2 belong to Uncibilocularis Southwell, 1925, and have triloculate bothridia and one pair of Forked hooks with unequal prongs; Type 3 has quadriloculate bothridia. Hook development was insufficient to determine in which genus, Acanthobothrium van Beneden, 1849 or Calliobothrium van Beneden, 1850, this type may belong. Type 4 has unilocular bothridia with simple edges and belongs to Anthobothrium van Beneden, 1850. Type 5 has multiloculated bothridia which are invaginated within pouches. This type belongs to the Rhinebothriinae although its generic identity cannot be determined. The bothridia of Type 5 everted within 24 hours of in vitro cultivation and revealed the presence of two forms, one having 48 loculi per bothridium, the other 72 per bothridium. In vitro studies provide additional support for existing theories of onchobothriid scolex development.
Resumo:
Examination of store-operated Ca2+ entry (SOC) in single, mechanically skinned skeletal muscle cells by confocal microscopy shows that the inositol 1,4,5-trisphosphate (IP3) receptor acts as a sarcoplasmic reticulum [Ca2+] sensor and mediates SOC by physical coupling without playing a key role in Ca2+ release from internal stores, as is the case with various cell types in which SOC was investigated previously. The results have broad implications for understanding the mechanism of SOC that is essential for cell function in general and muscle function in particular. Moreover, the study ascribes an important role to the IN receptors in skeletal muscle, the role of which with respect to Ca2+ homeostasis was ill defined until now.
Resumo:
Aldehyde dehydrogenases (ALDHs) catabolize toxic aldehydes and process the vitamin A-derived retinaldehyde into retinoic acid (RA), a small diffusible molecule and a pivotal chordate morphogen. In this study, we combine phylogenetic, structural, genomic, and developmental gene expression analyses to examine the evolutionary origins of ALDH substrate preference. Structural modeling reveals that processing of small aldehydes, such as acetaldehyde, by ALDH2, versus large aldehydes, including retinaldehyde, by ALDH1A is associated with small versus large substrate entry channels (SECs), respectively. Moreover, we show that metazoan ALDH1s and ALDH2s are members of a single ALDH1/2 clade and that during evolution, eukaryote ALDH1/2s often switched between large and small SECs after gene duplication, transforming constricted channels into wide opened ones and vice versa. Ancestral sequence reconstructions suggest that during the evolutionary emergence of RA signaling, the ancestral, narrow-channeled metazoan ALDH1/2 gave rise to large ALDH1 channels capable of accommodating bulky aldehydes, such as retinaldehyde, supporting the view that retinoid-dependent signaling arose from ancestral cellular detoxification mechanisms. Our analyses also indicate that, on a more restricted evolutionary scale, ALDH1 duplicates from invertebrate chordates (amphioxus and ascidian tunicates) underwent switches to smaller and narrower SECs. When combined with alterations in gene expression, these switches led to neofunctionalization from ALDH1-like roles in embryonic patterning to systemic, ALDH2-like roles, suggesting functional shifts from signaling to detoxification.
Resumo:
Mutations in PKD2 are responsible for approximately 15% of the autosomal dominant polycystic kidney disease cases. This gene encodes polycystin-2, a calcium-permeable cation channel whose C-terminal intracytosolic tail (PC2t) plays an important role in its interaction with a number of different proteins. In the present study, we have comprehensively evaluated the macromolecular assembly of PC2t homooligomer using a series of biophysical and biochemical analyses. Our studies, based on a new delimitation of PC2t, have revealed that it is capable of assembling as a homotetramer independently of any other portion of the molecule. Our data support this tetrameric arrangement in the presence and absence of calcium. Molecular dynamics simulations performed with a modified all-atoms structure-based model supported the PC2t tetrameric assembly, as well as how different populations are disposed in solution. The simulations demonstrated, indeed, that the best-scored structures are the ones compatible with a fourfold oligomeric state. These findings clarify the structural properties of PC2t domain and strongly support a homotetramer assembly of PC2.
Resumo:
Cell surface proteins are excellent targets for diagnostic and therapeutic interventions. By using bioinformatics tools, we generated a catalog of 3,702 transmembrane proteins located at the surface of human cells (human cell surfaceome). We explored the genetic diversity of the human cell surfaceome at different levels, including the distribution of polymorphisms, conservation among eukaryotic species, and patterns of gene expression. By integrating expression information from a variety of sources, we were able to identify surfaceome genes with a restricted expression in normal tissues and/or differential expression in tumors, important characteristics for putative tumor targets. A high-throughput and efficient quantitative real-time PCR approach was used to validate 593 surfaceome genes selected on the basis of their expression pattern in normal and tumor samples. A number of candidates were identified as potential diagnostic and therapeutic targets for colorectal tumors and glioblastoma. Several candidate genes were also identified as coding for cell surface cancer/testis antigens. The human cell surfaceome will serve as a reference for further studies aimed at characterizing tumor targets at the surface of human cells.
Resumo:
The human endometrium is a dynamic tissue that undergoes cycles of growth and regression with each menstrual cycle. Adult progenitor stem cells are likely responsible for this remarkable regenerative capacity; these same progenitor stem cells may also have an enhanced capacity to generate endometriosis if shed in a retrograde fashion. The progenitor stem cells reside in the uterus; however, less-committed mesenchymal stem cells may also travel from other tissues such as bone marrow to repopulate the progenitor population. Mesenchymal stem cells are also involved in the pathogenesis of endometriosis and may be the principle source of endometriosis outside of the peritoneal cavity when they differentiate into endometriosis in ectopic locations. Finally, besides progenitor stem cells, recent publications have identified multipotent stem cells in the endometrium. These multipotent stem cells are a readily available source of cells that are useful in tissue engineering and regenerative medicine. Endometrial stem cells have been used to generate chondrocytes, myocytes, neurons, and adiposites in vitro as well as to replace dopaminergic neurons in a murine model of Parkinson`s disease.
Resumo:
Rheumatoid arthritis (RA) is an autoimmune disorder characterized by chronic joint inflammation and continuous immune cell infiltration in the synovium. These changes are linked to inflammatory cytokine release, leading to eventual destruction of cartilage and bone. During the last decade new therapeutic modalities have improved the prognosis, with the introduction of novel biological response modifiers including anti-TNF alpha CTLA4Ig and, more recently, anti-IL6. In the present study we looked at the immunological effects of these three forms of therapy. Serum, obtained from patients with RA was analyzed for TNF alpha, IL6, IL10, IFN gamma, and VEGF, and in parallel, circulating plasmacytoid and myeloid dendritic cells (DC) were enumerated before and after three infusions of the respective biological treatments. After treatment with anti-IL6, we found a significant reduction of IL6 and TNF alpha levels and the percentage of both DC subsets decreased. Although the results did not reach statistical significance for anti-TNF alpha treatment, similar trends were observed. Meanwhile, CTLA4Ig therapy led to the reduction IFN gamma levels only. None of the treatments modified significantly VEGF or IL10 levels. These findings may explain why patients with RA improve more rapidly on IL-6 therapy than with the other two modalities.
Resumo:
The persistent nature of addiction has been associated with activity-induced plasticity of neurons within the striatum and nucleus accumbens (NAc). To identify the molecular processes leading to these adaptations, we performed Cre/loxP-mediated genetic ablations of two key regulators of gene expression in response to activity, the Ca2+/calmodulin-dependent protein kinase IV (CaMKIV) and its postulated main target, the cAMP-responsive element binding protein (CREB). We found that acute cocaine-induced gene expression in the striatum was largely unaffected by the loss of CaMKIV. On the behavioral level, mice lacking CaMKIV in dopaminoceptive neurons displayed increased sensitivity to cocaine as evidenced by augmented expression of locomotor sensitization and enhanced conditioned place preference and reinstatement after extinction. However, the loss of CREB in the forebrain had no effect on either of these behaviors, even though it robustly blunted acute cocaine-induced transcription. To test the relevance of these observations for addiction in humans, we performed an association study of CAMK4 and CREB promoter polymorphisms with cocaine addiction in a large sample of addicts. We found that a single nucleotide polymorphism in the CAMK4 promoter was significantly associated with cocaine addiction, whereas variations in the CREB promoter regions did not correlate with drug abuse. These findings reveal a critical role for CaMKIV in the development and persistence of cocaine-induced behaviors, through mechanisms dissociated from acute effects on gene expression and CREB-dependent transcription.
Resumo:
Osteonecrosis of the jaw (ONJ), previously an entity associated with radiation therapy to the head and neck, has been observed in patients treated with bisphosphonates. Patients with metastatic breast cancer and myelomatous bone disease, commonly treated with high-potency nitrogen-containing bisphosphonates for a prolonged period of time, have the greatest risk of ONJ development. The reported frequency of ONJ ranges from 0.6% to 6.2% in breast cancer and from 1.7% to 15% in patients with multiple myeloma. Osteonecrosis of the jaw has also been observed in patients with other cancers such as prostate cancer and in benign bone disorders such as osteoporosis and Paget`s disease in which the incidence is low. Risk factors associated with the development of ONJ include dental extractions, length of bisphosphonate treatment, and the type of bisphosphonate used. In this review, we summarize the reported incidence and risk factors associated with ONJ.
Resumo:
Early Alzheimer`s disease (AD) pathophysiology is characterized by synaptic changes induced by degradation products of amyloid precursor protein (APP). The exact mechanisms of such modulation are unknown. Here, we report that nanomolar concentrations of intraaxonal oligomeric (o)A beta 42, but not oA beta 40 or extracellular oA beta 42, acutely inhibited synaptic transmission at the squid giant synapse. Further characterization of this phenotype demonstrated that presynaptic calcium currents were unaffected. However, electron microscopy experiments revealed diminished docked synaptic vesicles in oA beta 42-microinjected terminals, without affecting clathrin-coated vesicles. The molecular events of this modulation involved casein kinase 2 and the synaptic vesicle rapid endocytosis pathway. These findings open the possibility of a new therapeutic target aimed at ameliorating synaptic dysfunction in AD.
Resumo:
Small GTPase Rab is a member of a large family of Ras-related proteins, highly conserved in eukaryotic cells, and thought to regulate specific type(s) and/or specific step(s) in intracellular membrane trafficking. Given our interest in synaptic transmission, we addressed the possibility that Rab27 (a close isoform of Rab3) could be involved in cytosolic synaptic vesicle mobilization. Indeed, preterminal injection of a specific antibody against squid Rab27 (anti-sqRab27 antibody) combined with confocal microscopy demonstrated that Rab27 is present on squid synaptic vesicles. Electrophysiological study of injected synapses showed that the anti-sqRab27 antibody inhibited synaptic release in a stimulation-dependent manner without affecting presynaptic action potentials or inward Ca2+ current. This result was confirmed in in vitro synaptosomes by using total internal reflection fluorescence microscopy. Thus, synaptosomal Ca2+-stimulated release of FM1-43 dye was greatly impaired by intraterminal anti-sqRab27 antibody. Ultrastructural analysis of the injected giant preterminal further showed a reduced number of docked synaptic vesicles and an increase in nondocked vesicular profiles distant from the active zone. These results, taken together, indicate that Rab27 is primarily involved in the maturation of recycled vesicles and/or their transport to the presynaptic active zone in the squid giant synapse.
Resumo:
A genetic polymorphism of the beta 2-glycoprotein I (beta 2-GPI) is recognized by antiphospholipid antibodies (aPL) and may even play a role in the development of antiphospholipid syndrome (APS). The objectives of this study were to determine a Val/Leu SNP at position 247 of the beta 2-GPI gene in Brazilian patients with APS and to compare these data with clinical and laboratory manifestations. Polymorphism assignment was performed by PCR followed by Rsa I restriction endonuclease. The titration of anti-beta 2-GPI antibodies was detected by ELISA. The results showed significantly higher frequencies of the V-encoding allele and the homozygous VV genotype in patients with APS than in control subjects (OR = 1.781, P = 0.0068; and OR = 6.413, P < 0.0001, respectively). The frequency of this genotype was also significantly higher in patients with arterial and venous thrombosis than in the control group (52% and 44%, respectively, versus 13%). Anti-beta 2-GPI-positive patients had significantly higher frequencies of the VV genotype than the controls subjects (OR = 8.179, P < 0.0001). These results suggest that the V-encoding allele and the homozygous VV genotype at position 247 of the beta 2-GPI gene may play a role in the generation of anomalous beta 2-GPI, with consequent auto-antibody production, and in phenotype expression of arterial and venous thrombosis in APS patients.