803 resultados para CONTINUUM GENERATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laboratory Fourier transform spectroscopy of pure water vapor and water vapor mixed with air has been conducted between 1200 and 8000 cm−1 and at temperatures between 293 and 351 K with the purpose of detecting and characterizing the water vapor continuum. The spectral features of the continuum within the major water absorption bands are presented and compared where possible to those from previous experimental studies and to the commonly used MT_CKD and CKD models. It was observed that in the main, both models adequately capture the general spectral form of the continuum; however, there were a number of exceptions. Overall, there is no evidence to indicate that MT_CKD is an improvement upon the older CKD model in these spectral regions. There was generally good agreement between our results and those of other experimental investigators. The general mathematical forms of the self-continuum temperature dependence, given by both Roberts et al. (1976) and CKD/MT_CKD, fit well to the experimental continuum in these spectral regions. However, the range of temperatures over which we made measurements is not sufficient to discriminate between these two forms or to exclude the possibility of other forms of temperature dependence being more appropriate. At the same time, the actual parameters currently used in CKD/MT_CKD to describe the temperature dependence in many spectral regions cannot reproduce the observed strong spectral variation in the temperature dependence. It has not been possible to make definitive conclusions about the magnitude of the continuum absorption in the far wings of the absorption bands investigated here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The polar winter stratospheric vortex is a coherent structure that undergoes different types of deformation that can be revealed by the geometric invariant moments. Three moments are used—the aspect ratio, the centroid latitude, and the area of the vortex based on stratospheric data from the 40-yr ECMWF Re-Analysis (ERA-40) project—to study sudden stratospheric warmings. Hierarchical clustering combined with data image visualization techniques is used as well. Using the gap statistic, three optimal clusters are obtained based on the three geometric moments considered here. The 850-K potential vorticity field, as well as the vertical profiles of polar temperature and zonal wind, provides evidence that the clusters represent, respectively, the undisturbed (U), displaced (D), and split (S) states of the polar vortex. This systematic method for identifying and characterizing the state of the polar vortex using objective methods is useful as a tool for analyzing observations and as a test for climate models to simulate the observations. The method correctly identifies all previously identified major warmings and also identifies significant minor warmings where the atmosphere is substantially disturbed but does not quite meet the criteria to qualify as a major stratospheric warming.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An important goal in computational neuroanatomy is the complete and accurate simulation of neuronal morphology. We are developing computational tools to model three-dimensional dendritic structures based on sets of stochastic rules. This paper reports an extensive, quantitative anatomical characterization of simulated motoneurons and Purkinje cells. We used several local and global algorithms implemented in the L-Neuron and ArborVitae programs to generate sets of virtual neurons. Parameters statistics for all algorithms were measured from experimental data, thus providing a compact and consistent description of these morphological classes. We compared the emergent anatomical features of each group of virtual neurons with those of the experimental database in order to gain insights on the plausibility of the model assumptions, potential improvements to the algorithms, and non-trivial relations among morphological parameters. Algorithms mainly based on local constraints (e.g., branch diameter) were successful in reproducing many morphological properties of both motoneurons and Purkinje cells (e.g. total length, asymmetry, number of bifurcations). The addition of global constraints (e.g., trophic factors) improved the angle-dependent emergent characteristics (average Euclidean distance from the soma to the dendritic terminations, dendritic spread). Virtual neurons systematically displayed greater anatomical variability than real cells, suggesting the need for additional constraints in the models. For several emergent anatomical properties, a specific algorithm reproduced the experimental statistics better than the others did. However, relative performances were often reversed for different anatomical properties and/or morphological classes. Thus, combining the strengths of alternative generative models could lead to comprehensive algorithms for the complete and accurate simulation of dendritic morphology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is generally assumed that the variability of neuronal morphology has an important effect on both the connectivity and the activity of the nervous system, but this effect has not been thoroughly investigated. Neuroanatomical archives represent a crucial tool to explore structure–function relationships in the brain. We are developing computational tools to describe, generate, store and render large sets of three–dimensional neuronal structures in a format that is compact, quantitative, accurate and readily accessible to the neuroscientist. Single–cell neuroanatomy can be characterized quantitatively at several levels. In computer–aided neuronal tracing files, a dendritic tree is described as a series of cylinders, each represented by diameter, spatial coordinates and the connectivity to other cylinders in the tree. This ‘Cartesian’ description constitutes a completely accurate mapping of dendritic morphology but it bears little intuitive information for the neuroscientist. In contrast, a classical neuroanatomical analysis characterizes neuronal dendrites on the basis of the statistical distributions of morphological parameters, e.g. maximum branching order or bifurcation asymmetry. This description is intuitively more accessible, but it only yields information on the collective anatomy of a group of dendrites, i.e. it is not complete enough to provide a precise ‘blueprint’ of the original data. We are adopting a third, intermediate level of description, which consists of the algorithmic generation of neuronal structures within a certain morphological class based on a set of ‘fundamental’, measured parameters. This description is as intuitive as a classical neuroanatomical analysis (parameters have an intuitive interpretation), and as complete as a Cartesian file (the algorithms generate and display complete neurons). The advantages of the algorithmic description of neuronal structure are immense. If an algorithm can measure the values of a handful of parameters from an experimental database and generate virtual neurons whose anatomy is statistically indistinguishable from that of their real counterparts, a great deal of data compression and amplification can be achieved. Data compression results from the quantitative and complete description of thousands of neurons with a handful of statistical distributions of parameters. Data amplification is possible because, from a set of experimental neurons, many more virtual analogues can be generated. This approach could allow one, in principle, to create and store a neuroanatomical database containing data for an entire human brain in a personal computer. We are using two programs, L–NEURON and ARBORVITAE, to investigate systematically the potential of several different algorithms for the generation of virtual neurons. Using these programs, we have generated anatomically plausible virtual neurons for several morphological classes, including guinea pig cerebellar Purkinje cells and cat spinal cord motor neurons. These virtual neurons are stored in an online electronic archive of dendritic morphology. This process highlights the potential and the limitations of the ‘computational neuroanatomy’ strategy for neuroscience databases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent laboratory observations and advances in theoretical quantum chemistry allow a reappraisal of the fundamental mechanisms that determine the water vapour self-continuum absorption throughout the infrared and millimetre wave spectral regions. By starting from a framework that partitions bimolecular interactions between water molecules into free-pair states, true bound and quasi-bound dimers, we present a critical review of recent observations, continuum models and theoretical predictions. In the near-infrared bands of the water monomer, we propose that spectral features in recent laboratory-derived self-continuum can be well explained as being due to a combination of true bound and quasi-bound dimers, when the spectrum of quasi-bound dimers is approximated as being double the broadened spectrum of the water monomer. Such a representation can explain both the wavenumber variation and the temperature dependence. Recent observations of the self-continuum absorption in the windows between these near-infrared bands indicate that widely used continuum models can underestimate the true strength by around an order of magnitude. An existing far-wing model does not appear able to explain the discrepancy, and although a dimer explanation is possible, currently available observations do not allow a compelling case to be made. In the 8–12 micron window, recent observations indicate that the modern continuum models either do not properly represent the temperature dependence, the wavelength variation, or both. The temperature dependence is suggestive of a transition from the dominance of true bound dimers at lower temperatures to quasibound dimers at higher temperatures. In the mid- and far-infrared spectral region, recent theoretical calculations indicate that true bound dimers may explain at least between 20% and 40% of the observed self-continuum. The possibility that quasi-bound dimers could cause an additional contribution of the same size is discussed. Most recent theoretical considerations agree that water dimers are likely to be the dominant contributor to the self-continuum in the mm-wave spectral range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over recent years there has been an increasing deployment of renewable energy generation technologies, particularly large-scale wind farms. As wind farm deployment increases, it is vital to gain a good understanding of how the energy produced is affected by climate variations, over a wide range of time-scales, from short (hours to weeks) to long (months to decades) periods. By relating wind speed at specific sites in the UK to a large-scale climate pattern (the North Atlantic Oscillation or "NAO"), the power generated by a modelled wind turbine under three different NAO states is calculated. It was found that the wind conditions under these NAO states may yield a difference in the mean wind power output of up to 10%. A simple model is used to demonstrate that forecasts of future NAO states can potentially be used to improve month-ahead statistical forecasts of monthly-mean wind power generation. The results confirm that the NAO has a significant impact on the hourly-, daily- and monthly-mean power output distributions from the turbine with important implications for (a) the use of meteorological data (e.g. their relationship to large scale climate patterns) in wind farm site assessment and, (b) the utilisation of seasonal-to-decadal climate forecasts to estimate future wind farm power output. This suggests that further research into the links between large-scale climate variability and wind power generation is both necessary and valuable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Waves with periods shorter than the inertial period exist in the atmosphere (as inertia-gravity waves) and in the oceans (as Poincaré and internal gravity waves). Such waves owe their origin to various mechanisms, but of particular interest are those arising either from local secondary instabilities or spontaneous emission due to loss of balance. These phenomena have been studied in the laboratory, both in the mechanically-forced and the thermally-forced rotating annulus. Their generation mechanisms, especially in the latter system, have not yet been fully understood, however. Here we examine short period waves in a numerical model of the rotating thermal annulus, and show how the results are consistent with those from earlier laboratory experiments. We then show how these waves are consistent with being inertia-gravity waves generated by a localised instability within the thermal boundary layer, the location of which is determined by regions of strong shear and downwelling at certain points within a large-scale baroclinic wave flow. The resulting instability launches small-scale inertia-gravity waves into the geostrophic interior of the flow. Their behaviour is captured in fully nonlinear numerical simulations in a finite-difference, 3D Boussinesq Navier-Stokes model. Such a mechanism has many similarities with those responsible for launching small- and meso-scale inertia-gravity waves in the atmosphere from fronts and local convection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The integration of processes at different scales is a key problem in the modelling of cell populations. Owing to increased computational resources and the accumulation of data at the cellular and subcellular scales, the use of discrete, cell-level models, which are typically solved using numerical simulations, has become prominent. One of the merits of this approach is that important biological factors, such as cell heterogeneity and noise, can be easily incorporated. However, it can be difficult to efficiently draw generalizations from the simulation results, as, often, many simulation runs are required to investigate model behaviour in typically large parameter spaces. In some cases, discrete cell-level models can be coarse-grained, yielding continuum models whose analysis can lead to the development of insight into the underlying simulations. In this paper we apply such an approach to the case of a discrete model of cell dynamics in the intestinal crypt. An analysis of the resulting continuum model demonstrates that there is a limited region of parameter space within which steady-state (and hence biologically realistic) solutions exist. Continuum model predictions show good agreement with corresponding results from the underlying simulations and experimental data taken from murine intestinal crypts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electricity consumption in Ghana is estimated to be increasing by 10% per annum due to the demand from the growing population. However, current sources of production (hydro and thermal facilities) generate only 66% of the current demand. Considering current trends, it is difficult to substantiate these basic facts, because of the lack of information. As a result, research into the existing sources of generating electricity, electricity consumption and prospective projects has been performed. This was achieved using three key techniques; review of literature, empirical studies and modelling. The results presented suggest that, current annual installed capacity of energy generation (i.e. 1960 MW) must be increased to 9,405.59 MW, assuming 85% plant availability. This is then capable to coop with the growing demand and it would give access to the entire population as well as support commercial and industrial activities for the growth of the economy. The prospect of performing this research is with the expectation to present an academic research agenda for further exploration into the subject area, without which the growth of the country would be stagnant.