858 resultados para COMPUTER SCIENCE, THEORY
Resumo:
Reorganizing a dataset so that its hidden structure can be observed is useful in any data analysis task. For example, detecting a regularity in a dataset helps us to interpret the data, compress the data, and explain the processes behind the data. We study datasets that come in the form of binary matrices (tables with 0s and 1s). Our goal is to develop automatic methods that bring out certain patterns by permuting the rows and columns. We concentrate on the following patterns in binary matrices: consecutive-ones (C1P), simultaneous consecutive-ones (SC1P), nestedness, k-nestedness, and bandedness. These patterns reflect specific types of interplay and variation between the rows and columns, such as continuity and hierarchies. Furthermore, their combinatorial properties are interlinked, which helps us to develop the theory of binary matrices and efficient algorithms. Indeed, we can detect all these patterns in a binary matrix efficiently, that is, in polynomial time in the size of the matrix. Since real-world datasets often contain noise and errors, we rarely witness perfect patterns. Therefore we also need to assess how far an input matrix is from a pattern: we count the number of flips (from 0s to 1s or vice versa) needed to bring out the perfect pattern in the matrix. Unfortunately, for most patterns it is an NP-complete problem to find the minimum distance to a matrix that has the perfect pattern, which means that the existence of a polynomial-time algorithm is unlikely. To find patterns in datasets with noise, we need methods that are noise-tolerant and work in practical time with large datasets. The theory of binary matrices gives rise to robust heuristics that have good performance with synthetic data and discover easily interpretable structures in real-world datasets: dialectical variation in the spoken Finnish language, division of European locations by the hierarchies found in mammal occurrences, and co-occuring groups in network data. In addition to determining the distance from a dataset to a pattern, we need to determine whether the pattern is significant or a mere occurrence of a random chance. To this end, we use significance testing: we deem a dataset significant if it appears exceptional when compared to datasets generated from a certain null hypothesis. After detecting a significant pattern in a dataset, it is up to domain experts to interpret the results in the terms of the application.
Resumo:
Combat games are studied as bicriterion differential games with qualitative outcomes determined by threshold values on the criterion functions. Survival and capture strategies of the players are defined using the notion of security levels. Closest approach survival strategies (CASS) and minimum risk capture strategies (MRCS) are important strategies for the players identified as solutions to four optimization problems involving security levels. These are used, in combination with the preference orderings of the qualitative outcomes by the players, to delineate the win regions and the secured draw and mutual kill regions for the players. It is shown that the secured draw regions and the secured mutual kill regions for the two players are not necessarily the same. Simple illustrative examples are given.
Resumo:
This paper considers nonzero-sum multicriteria games with continuous kernels. Solution concepts based on the notions of Pareto optimality, equilibrium, and security are extended to these games. Separate necessary and sufficient conditions and existence results are presented for equilibrium, Pareto-optimal response, and Pareto-optimal security strategies of the players.
Resumo:
Let G(V, E) be a simple, undirected graph where V is the set of vertices and E is the set of edges. A b-dimensional cube is a Cartesian product l(1) x l(2) x ... x l(b), where each l(i) is a closed interval of unit length on the real line. The cub/city of G, denoted by cub(G), is the minimum positive integer b such that the vertices in G can be mapped to axis parallel b-dimensional cubes in such a way that two vertices are adjacent in G if and only if their assigned cubes intersect. An interval graph is a graph that can be represented as the intersection of intervals on the real line-i.e. the vertices of an interval graph can be mapped to intervals on the real line such that two vertices are adjacent if and only if their corresponding intervals overlap. Suppose S(m) denotes a star graph on m+1 nodes. We define claw number psi(G) of the graph to be the largest positive integer m such that S(m) is an induced subgraph of G. It can be easily shown that the cubicity of any graph is at least log(2) psi(G)]. In this article, we show that for an interval graph G log(2) psi(G)-]<= cub(G)<=log(2) psi(G)]+2. It is not clear whether the upper bound of log(2) psi(G)]+2 is tight: till now we are unable to find any interval graph with cub(G)> (log(2)psi(G)]. We also show that for an interval graph G, cub(G) <= log(2) alpha], where alpha is the independence number of G. Therefore, in the special case of psi(G)=alpha, cub(G) is exactly log(2) alpha(2)]. The concept of cubicity can be generalized by considering boxes instead of cubes. A b-dimensional box is a Cartesian product l(1) x l(2) x ... x l(b), where each I is a closed interval on the real line. The boxicity of a graph, denoted box(G), is the minimum k such that G is the intersection graph of k-dimensional boxes. It is clear that box(G)<= cub(G). From the above result, it follows that for any graph G, cub(G) <= box(G)log(2) alpha]. (C) 2010 Wiley Periodicals, Inc. J Graph Theory 65: 323-333, 2010
Resumo:
In a max-min LP, the objective is to maximise subject to Ax 1, Cx 1, and x 0. In a min-max LP, the objective is to minimise subject to Ax 1, Cx 1, and x 0. The matrices A and C are nonnegative and sparse: each row ai of A has at most I positive elements, and each row ck of C has at most K positive elements. We study the approximability of max-min LPs and min-max LPs in a distributed setting; in particular, we focus on local algorithms (constant-time distributed algorithms). We show that for any I 2, K 2, and > 0 there exists a local algorithm that achieves the approximation ratio I (1 1/K) + . We also show that this result is the best possible: no local algorithm can achieve the approximation ratio I (1 1/K) for any I 2 and K 2.
Resumo:
Our study concerns an important current problem, that of diffusion of information in social networks. This problem has received significant attention from the Internet research community in the recent times, driven by many potential applications such as viral marketing and sales promotions. In this paper, we focus on the target set selection problem, which involves discovering a small subset of influential players in a given social network, to perform a certain task of information diffusion. The target set selection problem manifests in two forms: 1) top-k nodes problem and 2) lambda-coverage problem. In the top-k nodes problem, we are required to find a set of k key nodes that would maximize the number of nodes being influenced in the network. The lambda-coverage problem is concerned with finding a set of k key nodes having minimal size that can influence a given percentage lambda of the nodes in the entire network. We propose a new way of solving these problems using the concept of Shapley value which is a well known solution concept in cooperative game theory. Our approach leads to algorithms which we call the ShaPley value-based Influential Nodes (SPINs) algorithms for solving the top-k nodes problem and the lambda-coverage problem. We compare the performance of the proposed SPIN algorithms with well known algorithms in the literature. Through extensive experimentation on four synthetically generated random graphs and six real-world data sets (Celegans, Jazz, NIPS coauthorship data set, Netscience data set, High-Energy Physics data set, and Political Books data set), we show that the proposed SPIN approach is more powerful and computationally efficient. Note to Practitioners-In recent times, social networks have received a high level of attention due to their proven ability in improving the performance of web search, recommendations in collaborative filtering systems, spreading a technology in the market using viral marketing techniques, etc. It is well known that the interpersonal relationships (or ties or links) between individuals cause change or improvement in the social system because the decisions made by individuals are influenced heavily by the behavior of their neighbors. An interesting and key problem in social networks is to discover the most influential nodes in the social network which can influence other nodes in the social network in a strong and deep way. This problem is called the target set selection problem and has two variants: 1) the top-k nodes problem, where we are required to identify a set of k influential nodes that maximize the number of nodes being influenced in the network and 2) the lambda-coverage problem which involves finding a set of influential nodes having minimum size that can influence a given percentage lambda of the nodes in the entire network. There are many existing algorithms in the literature for solving these problems. In this paper, we propose a new algorithm which is based on a novel interpretation of information diffusion in a social network as a cooperative game. Using this analogy, we develop an algorithm based on the Shapley value of the underlying cooperative game. The proposed algorithm outperforms the existing algorithms in terms of generality or computational complexity or both. Our results are validated through extensive experimentation on both synthetically generated and real-world data sets.
Resumo:
Gauss and Fourier have together provided us with the essential techniques for symbolic computation with linear arithmetic constraints over the reals and the rationals. These variable elimination techniques for linear constraints have particular significance in the context of constraint logic programming languages that have been developed in recent years. Variable elimination in linear equations (Guassian Elimination) is a fundamental technique in computational linear algebra and is therefore quite familiar to most of us. Elimination in linear inequalities (Fourier Elimination), on the other hand, is intimately related to polyhedral theory and aspects of linear programming that are not quite as familiar. In addition, the high complexity of elimination in inequalities has forces the consideration of intricate specializations of Fourier's original method. The intent of this survey article is to acquaint the reader with these connections and developments. The latter part of the article dwells on the thesis that variable elimination in linear constraints over the reals extends quite naturally to constraints in certain discrete domains.
Resumo:
An escape mechanism in a bistable system driven by colored noise of large but finite correlation time (tau) is analyzed. It is shown that the fluctuating potential theory [Phys. Rev. A 38, 3749 (1988)] becomes invalid in a region around the inflection points of the bistable potential, resulting in the underestimation of the mean first passage time at finite tau by this theory. It is shown that transitions at large but finite tau are caused by noise spikes, with edges rising and falling exponentially in a time of O(tau). Simulation of the dynamics of the bistable system driven by noise spikes of the above-mentioned nature clearly reveal the physical mechanism behind the transition.
Resumo:
In this paper cognitive science is defined as the study of intelligence as a computational process. The several disciplines which contribute to the study of cognitive science are briefly described so as to glean a birds-eye view of the subject of cognitive science.
Resumo:
We address the optimal control problem of a very general stochastic hybrid system with both autonomous and impulsive jumps. The planning horizon is infinite and we use the discounted-cost criterion for performance evaluation. Under certain assumptions, we show the existence of an optimal control. We then derive the quasivariational inequalities satisfied by the value function and establish well-posedness. Finally, we prove the usual verification theorem of dynamic programming.
Resumo:
This paper looks at the complexity of four different incremental problems. The following are the problems considered: (1) Interval partitioning of a flow graph (2) Breadth first search (BFS) of a directed graph (3) Lexicographic depth first search (DFS) of a directed graph (4) Constructing the postorder listing of the nodes of a binary tree. The last problem arises out of the need for incrementally computing the Sethi-Ullman (SU) ordering [1] of the subtrees of a tree after it has undergone changes of a given type. These problems are among those that claimed our attention in the process of our designing algorithmic techniques for incremental code generation. BFS and DFS have certainly numerous other applications, but as far as our work is concerned, incremental code generation is the common thread linking these problems. The study of the complexity of these problems is done from two different perspectives. In [2] is given the theory of incremental relative lower bounds (IRLB). We use this theory to derive the IRLBs of the first three problems. Then we use the notion of a bounded incremental algorithm [4] to prove the unboundedness of the fourth problem with respect to the locally persistent model of computation. Possibly, the lower bound result for lexicographic DFS is the most interesting. In [5] the author considers lexicographic DFS to be a problem for which the incremental version may require the recomputation of the entire solution from scratch. In that sense, our IRLB result provides further evidence for this possibility with the proviso that the incremental DFS algorithms considered be ones that do not require too much of preprocessing.
Resumo:
Electronic Exchanges are double-sided marketplaces that allows multiple buyers to trade with multiple sellers, with aggregation of demand and supply across the bids to maximize the revenue in the market. In this paper, we propose a new design approach for an one-shot exchange that collects bids from buyers and sellers and clears the market at the end of the bidding period. The main principle of the approach is to decouple the allocation from pricing. It is well known that it is impossible for an exchange with voluntary participation to be efficient and budget-balanced. Budget-balance is a mandatory requirement for an exchange to operate in profit. Our approach is to allocate the trade to maximize the reported values of the agents. The pricing is posed as payoff determination problem that distributes the total payoff fairly to all agents with budget-balance imposed as a constraint. We devise an arbitration scheme by axiomatic approach to solve the payoff determination problem using the added-value concept of game theory.
Resumo:
In data mining, an important goal is to generate an abstraction of the data. Such an abstraction helps in reducing the space and search time requirements of the overall decision making process. Further, it is important that the abstraction is generated from the data with a small number of disk scans. We propose a novel data structure, pattern count tree (PC-tree), that can be built by scanning the database only once. PC-tree is a minimal size complete representation of the data and it can be used to represent dynamic databases with the help of knowledge that is either static or changing. We show that further compactness can be achieved by constructing the PC-tree on segmented patterns. We exploit the flexibility offered by rough sets to realize a rough PC-tree and use it for efficient and effective rough classification. To be consistent with the sizes of the branches of the PC-tree, we use upper and lower approximations of feature sets in a manner different from the conventional rough set theory. We conducted experiments using the proposed classification scheme on a large-scale hand-written digit data set. We use the experimental results to establish the efficacy of the proposed approach. (C) 2002 Elsevier Science B.V. All rights reserved.